Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning

We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad hoc post-processing softwar...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez Von Ellrich, Andres, Dreidemie, Carola, Inchaurza, Fernan, Cucurull, Agustin, Basti, Marian, Masciocchi, Maite
Formato: Artículo
Lenguaje:Inglés
Publicado: Wiley 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/18525
https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638
https://doi.org/10.1111/afe.12638
_version_ 1855486189940768768
author Martinez Von Ellrich, Andres
Dreidemie, Carola
Inchaurza, Fernan
Cucurull, Agustin
Basti, Marian
Masciocchi, Maite
author_browse Basti, Marian
Cucurull, Agustin
Dreidemie, Carola
Inchaurza, Fernan
Martinez Von Ellrich, Andres
Masciocchi, Maite
author_facet Martinez Von Ellrich, Andres
Dreidemie, Carola
Inchaurza, Fernan
Cucurull, Agustin
Basti, Marian
Masciocchi, Maite
author_sort Martinez Von Ellrich, Andres
collection INTA Digital
description We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals. This innovative tool holds immense potential for advancing ecological and behavioural research by providing researchers with rapid and easily accessible data. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems.
format Artículo
id INTA18525
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Wiley
publisherStr Wiley
record_format dspace
spelling INTA185252024-07-16T12:23:58Z Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning Martinez Von Ellrich, Andres Dreidemie, Carola Inchaurza, Fernan Cucurull, Agustin Basti, Marian Masciocchi, Maite Vespidae Plant Pests Nesting Monitoring Research Vespula Big Data Neural Networks Plagas de Plantas Nidificación Vigilancia Investigación Macrodato Red de Neuronas Avipa Chaqueta Amarilla Yellowjacket We describe the development and validation of an autonomous monitoring station that identifies and records the movement of social insects into and out of the colony. The hardware consists of an illuminated channel and a fixed camera to capture the wasps' activities. An ad hoc post-processing software was developed to identify the direction of movement and caste of the recorded individuals. Validation results indicate that the model can detect with high levels of accuracy the presence of workers, drones and gynes, whereas direction of movement is accurate only for workers and drones, but not for gynes. Further development of the software and hardware should enable higher levels of accuracy, especially in terms of the direction of movement of reproductive individuals. This innovative tool holds immense potential for advancing ecological and behavioural research by providing researchers with rapid and easily accessible data. Understanding the activity patterns of individual wasps within the colony can yield valuable insights into factors influencing their growth, foraging patterns and the behaviour of reproductive individuals. Ultimately, this information can be incorporated into effective management plans for controlling harmful social insect populations in both ecological and productive systems. EEA Bariloche Fil: Martinez, Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Martinez, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Dreidemie, Carola. Universidad Nacional de Rio Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencias Aplicadas. Laboratorio de Visualización y Código Creativo; Argentina Fil: Dreidemie, Carola. La Rochelle Université. Policémies; Francia Fil: Inchaurza, Fernan. Universidad Nacional de Rio Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencias Aplicadas. Laboratorio de Visualización y Código Creativo; Argentina Fil: Cucurull, Agustin. Universidad Nacional de Rio Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencias Aplicadas. Laboratorio de Visualización y Código Creativo; Argentina Fil: Basti, Marian. Universidad Nacional de Rio Negro. Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencias Aplicadas. Laboratorio de Visualización y Código Creativo; Argentina Fil: Masciocchi, Maite. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Masciocchi, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB). Grupo de Ecología de Poblaciones de Insectos; Argentina 2024-07-16T12:18:51Z 2024-07-16T12:18:51Z 2024-07 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/18525 https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638 1461-9555 1461-9563 https://doi.org/10.1111/afe.12638 eng info:eu-repograntAgreement/INTA/2023-PE-L03-I033, Gestión Sostenible de los sistemas forestales naturales y cultivados para el desarrollo de los territorios y la provisión de servicios ecosistémicos en Patagonia Andina info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Wiley Agricultural and Forest Entomology : 1-13 (First published: 05 July 2024)
spellingShingle Vespidae
Plant Pests
Nesting
Monitoring
Research
Vespula
Big Data
Neural Networks
Plagas de Plantas
Nidificación
Vigilancia
Investigación
Macrodato
Red de Neuronas
Avipa Chaqueta Amarilla
Yellowjacket
Martinez Von Ellrich, Andres
Dreidemie, Carola
Inchaurza, Fernan
Cucurull, Agustin
Basti, Marian
Masciocchi, Maite
Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title_full Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title_fullStr Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title_full_unstemmed Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title_short Advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
title_sort advancing social insect research through the development of an automated yellowjacket nest activity monitoring station using deep learning
topic Vespidae
Plant Pests
Nesting
Monitoring
Research
Vespula
Big Data
Neural Networks
Plagas de Plantas
Nidificación
Vigilancia
Investigación
Macrodato
Red de Neuronas
Avipa Chaqueta Amarilla
Yellowjacket
url http://hdl.handle.net/20.500.12123/18525
https://resjournals.onlinelibrary.wiley.com/doi/10.1111/afe.12638
https://doi.org/10.1111/afe.12638
work_keys_str_mv AT martinezvonellrichandres advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning
AT dreidemiecarola advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning
AT inchaurzafernan advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning
AT cucurullagustin advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning
AT bastimarian advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning
AT masciocchimaite advancingsocialinsectresearchthroughthedevelopmentofanautomatedyellowjacketnestactivitymonitoringstationusingdeeplearning