Looking for biological indicators of soil using hierarchical clustering

Soil microbial activity (SMA) is related to the use and management of soil we hypothesized that a single change in the sequence of crop rotation could be detected through changes in the biological and microbial activity of the soil. We analyzed SMA from and agricultural typic argiudoll soil under no...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossi, Maria Sol, Michelena, Roberto, Casas, Roberto Raul
Formato: Conferencia
Lenguaje:Español
Publicado: Asociación Argentina de la Ciencia del Suelo 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/18019
_version_ 1855486087045054464
author Rossi, Maria Sol
Michelena, Roberto
Casas, Roberto Raul
author_browse Casas, Roberto Raul
Michelena, Roberto
Rossi, Maria Sol
author_facet Rossi, Maria Sol
Michelena, Roberto
Casas, Roberto Raul
author_sort Rossi, Maria Sol
collection INTA Digital
description Soil microbial activity (SMA) is related to the use and management of soil we hypothesized that a single change in the sequence of crop rotation could be detected through changes in the biological and microbial activity of the soil. We analyzed SMA from and agricultural typic argiudoll soil under no-tillage (NT) with different crop rotation (corn-oat-soybean(COS), corn-soybean (C-S) and undisturbed soil as control (N.C)). We measured dehydrogenase activity, B glucosidade activity, community level physiological profiles, taxonomic microbial grops and the physiologycal broup involved in the carbon cycle (cellulose-and_amylose-decomposing micro-organisms) to detect changes in microbial activity. We also measured carbon from microbial biomass, total organic carbon, soil respiration, sustrate induced respiration, biological quotient and metabolic quotient (QCO2) to detect changes in biological activity. Dependence on the variables analyzed by Bartlett's test allowed us the apply correspondence analysis and principal components analysis (PCA). PCA showed three different soil conditions and a negative correlation between qCO2 and the other variables. Hierarchical clustering analysis using ward algorithm confirmed that qCO2 and BMC showed the three soil conditions. In fact qCO2 and BMC explained the maximum sensitivity against contrasting management situations. Increased enzymatic activities in rotation with the highest crop residues expedite mineralization and mobilization of available nutritient. We observed a quick response of the SMA to a single change in the crop rotation.
format Conferencia
id INTA18019
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Español
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Asociación Argentina de la Ciencia del Suelo
publisherStr Asociación Argentina de la Ciencia del Suelo
record_format dspace
spelling INTA180192024-06-04T11:37:05Z Looking for biological indicators of soil using hierarchical clustering Rossi, Maria Sol Michelena, Roberto Casas, Roberto Raul Crop Rotation Enzyme Activity Soil Rotación de Cultivos Actividad Enzimática Suelo Metabolic Quotient Soil Microbial Biomass Cociente Metabólico Biomasa Microbiana del Suelo Soil microbial activity (SMA) is related to the use and management of soil we hypothesized that a single change in the sequence of crop rotation could be detected through changes in the biological and microbial activity of the soil. We analyzed SMA from and agricultural typic argiudoll soil under no-tillage (NT) with different crop rotation (corn-oat-soybean(COS), corn-soybean (C-S) and undisturbed soil as control (N.C)). We measured dehydrogenase activity, B glucosidade activity, community level physiological profiles, taxonomic microbial grops and the physiologycal broup involved in the carbon cycle (cellulose-and_amylose-decomposing micro-organisms) to detect changes in microbial activity. We also measured carbon from microbial biomass, total organic carbon, soil respiration, sustrate induced respiration, biological quotient and metabolic quotient (QCO2) to detect changes in biological activity. Dependence on the variables analyzed by Bartlett's test allowed us the apply correspondence analysis and principal components analysis (PCA). PCA showed three different soil conditions and a negative correlation between qCO2 and the other variables. Hierarchical clustering analysis using ward algorithm confirmed that qCO2 and BMC showed the three soil conditions. In fact qCO2 and BMC explained the maximum sensitivity against contrasting management situations. Increased enzymatic activities in rotation with the highest crop residues expedite mineralization and mobilization of available nutritient. We observed a quick response of the SMA to a single change in the crop rotation. Instituto de Suelos Fil: Rossi, María Sol. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Michelena, Roberto Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Casas, Roberto Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina 2024-06-04T11:31:42Z 2024-06-04T11:31:42Z 2010-05-31 info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/18019 spa info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Asociación Argentina de la Ciencia del Suelo 22o. Congreso Argentino de la Ciencia del Suelo. "El suelo pilar de la agroindustria en la pampa Argentina. Rosario, Argentina del 31 de mayo al 04 de junio de 2010.
spellingShingle Crop Rotation
Enzyme Activity
Soil
Rotación de Cultivos
Actividad Enzimática
Suelo
Metabolic Quotient
Soil Microbial Biomass
Cociente Metabólico
Biomasa Microbiana del Suelo
Rossi, Maria Sol
Michelena, Roberto
Casas, Roberto Raul
Looking for biological indicators of soil using hierarchical clustering
title Looking for biological indicators of soil using hierarchical clustering
title_full Looking for biological indicators of soil using hierarchical clustering
title_fullStr Looking for biological indicators of soil using hierarchical clustering
title_full_unstemmed Looking for biological indicators of soil using hierarchical clustering
title_short Looking for biological indicators of soil using hierarchical clustering
title_sort looking for biological indicators of soil using hierarchical clustering
topic Crop Rotation
Enzyme Activity
Soil
Rotación de Cultivos
Actividad Enzimática
Suelo
Metabolic Quotient
Soil Microbial Biomass
Cociente Metabólico
Biomasa Microbiana del Suelo
url http://hdl.handle.net/20.500.12123/18019
work_keys_str_mv AT rossimariasol lookingforbiologicalindicatorsofsoilusinghierarchicalclustering
AT michelenaroberto lookingforbiologicalindicatorsofsoilusinghierarchicalclustering
AT casasrobertoraul lookingforbiologicalindicatorsofsoilusinghierarchicalclustering