New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis

Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification tech...

Descripción completa

Detalles Bibliográficos
Autores principales: Hojsgaard, Diego, Feingold, Sergio Enrique, Massa, Gabriela Alejandra, Bradshaw, John
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Multidisciplinary Digital Publishing Institute, MDPI 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/17977
https://www.mdpi.com/2218-273X/14/6/614
https://doi.org/10.3390/biom14060614
_version_ 1855037768915222528
author Hojsgaard, Diego
Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
author_browse Bradshaw, John
Feingold, Sergio Enrique
Hojsgaard, Diego
Massa, Gabriela Alejandra
author_facet Hojsgaard, Diego
Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
author_sort Hojsgaard, Diego
collection INTA Digital
description Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
format info:ar-repo/semantics/artículo
id INTA17977
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Multidisciplinary Digital Publishing Institute, MDPI
publisherStr Multidisciplinary Digital Publishing Institute, MDPI
record_format dspace
spelling INTA179772024-05-31T10:34:03Z New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis Hojsgaard, Diego Feingold, Sergio Enrique Massa, Gabriela Alejandra Bradshaw, John Apomixis Germplasm Banks Gene Editing Parthenogenesis Gametogénesis Banco de Germoplasma Edición de Genes Mitosis Partenogénesis Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop’s biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato’s natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities. EEA Balcarce Fil: Hojsgaard, Diego. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania Fil: Nagel, Manuela. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania Fil: Feingold, Sergio Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: Massa, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: Massa, Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Bradshaw, John. James Hutton Institute; Reino Unido 2024-05-31T10:30:01Z 2024-05-31T10:30:01Z 2024-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/17977 https://www.mdpi.com/2218-273X/14/6/614 2218-273X https://doi.org/10.3390/biom14060614 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Multidisciplinary Digital Publishing Institute, MDPI Biomolecules 14 (6) : 614 (May 2024)
spellingShingle Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
Hojsgaard, Diego
Feingold, Sergio Enrique
Massa, Gabriela Alejandra
Bradshaw, John
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_full New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_fullStr New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_full_unstemmed New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_short New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
title_sort new frontiers in potato breeding tinkering with reproductive genes and apomixis
topic Apomixis
Germplasm Banks
Gene Editing
Parthenogenesis
Gametogénesis
Banco de Germoplasma
Edición de Genes
Mitosis
Partenogénesis
url http://hdl.handle.net/20.500.12123/17977
https://www.mdpi.com/2218-273X/14/6/614
https://doi.org/10.3390/biom14060614
work_keys_str_mv AT hojsgaarddiego newfrontiersinpotatobreedingtinkeringwithreproductivegenesandapomixis
AT feingoldsergioenrique newfrontiersinpotatobreedingtinkeringwithreproductivegenesandapomixis
AT massagabrielaalejandra newfrontiersinpotatobreedingtinkeringwithreproductivegenesandapomixis
AT bradshawjohn newfrontiersinpotatobreedingtinkeringwithreproductivegenesandapomixis