Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions

The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation...

Full description

Bibliographic Details
Main Authors: Perri, Daiana Vanesa, Hurtado, Santiago Ignacio, Bruzzone, Octavio Augusto, Easdale, Marcos Horacio
Format: Artículo
Language:Inglés
Published: Springer 2023
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/16238
https://link.springer.com/article/10.1007/s00704-023-04730-8
https://doi.org/10.1007/s00704-023-04730-8
_version_ 1855485721133973504
author Perri, Daiana Vanesa
Hurtado, Santiago Ignacio
Bruzzone, Octavio Augusto
Easdale, Marcos Horacio
author_browse Bruzzone, Octavio Augusto
Easdale, Marcos Horacio
Hurtado, Santiago Ignacio
Perri, Daiana Vanesa
author_facet Perri, Daiana Vanesa
Hurtado, Santiago Ignacio
Bruzzone, Octavio Augusto
Easdale, Marcos Horacio
author_sort Perri, Daiana Vanesa
collection INTA Digital
description The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction
format Artículo
id INTA16238
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Springer
publisherStr Springer
record_format dspace
spelling INTA162382023-12-14T16:58:26Z Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions Perri, Daiana Vanesa Hurtado, Santiago Ignacio Bruzzone, Octavio Augusto Easdale, Marcos Horacio Vigilancia Ambiental Agricultura Precipitación Atmosférica Sequía Environmental Monitoring Agriculture Precipitation Drought ERA5 Herramientas de Monitoreo Región Patagónica The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with diferent automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three diferent regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-of frequency of a low-pass flter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for diferent environmental and agricultural applications aimed at ofering permanent and updated information, such as monitoring drought, food, wildfre risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction EEA Bariloche Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Perri, Daiana Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Área de Recursos Naturales; Argentina Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina 2023-12-14T14:44:39Z 2023-12-14T14:44:39Z 2023-11-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/16238 https://link.springer.com/article/10.1007/s00704-023-04730-8 1434-4483 0177-798X https://doi.org/10.1007/s00704-023-04730-8 eng info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Patagonia .......... (general region) (World, South America, Argentina) 7016766 Springer Theoretical and Applied Climatology 154. (November 2023)
spellingShingle Vigilancia Ambiental
Agricultura
Precipitación Atmosférica
Sequía
Environmental Monitoring
Agriculture
Precipitation
Drought
ERA5
Herramientas de Monitoreo
Región Patagónica
Perri, Daiana Vanesa
Hurtado, Santiago Ignacio
Bruzzone, Octavio Augusto
Easdale, Marcos Horacio
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title_full Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title_fullStr Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title_full_unstemmed Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title_short Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
title_sort optimal automatic enhanced era5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions
topic Vigilancia Ambiental
Agricultura
Precipitación Atmosférica
Sequía
Environmental Monitoring
Agriculture
Precipitation
Drought
ERA5
Herramientas de Monitoreo
Región Patagónica
url http://hdl.handle.net/20.500.12123/16238
https://link.springer.com/article/10.1007/s00704-023-04730-8
https://doi.org/10.1007/s00704-023-04730-8
work_keys_str_mv AT perridaianavanesa optimalautomaticenhancedera5dailyprecipitationdataforenvironmentalandagriculturalmonitoringtoolsinscarcedataregions
AT hurtadosantiagoignacio optimalautomaticenhancedera5dailyprecipitationdataforenvironmentalandagriculturalmonitoringtoolsinscarcedataregions
AT bruzzoneoctavioaugusto optimalautomaticenhancedera5dailyprecipitationdataforenvironmentalandagriculturalmonitoringtoolsinscarcedataregions
AT easdalemarcoshoracio optimalautomaticenhancedera5dailyprecipitationdataforenvironmentalandagriculturalmonitoringtoolsinscarcedataregions