Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method

Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large unc...

Descripción completa

Detalles Bibliográficos
Autores principales: Yunjun, Yao, Shunlin, Liang, Yuhu, Zhang, Jiquan, Chen, Xianglan, Li, Kun, Jia, Xiaotong, Zhang, Fisher, Joshua B., Xuanyu, Wang, Lilin, Zhang, Jia, Xu, Changliang, Shao, Posse Beaulieu, Gabriela, Yingnian, Li, Magliulo, Vincenzo, Varlagin, Andrej, Moors, Eddy J., Boike, Julia, Macfarlane, Craig, Kato, Tomomichi, Buchmann, Nina, Billesbach, D.P., Beringer, Jason, Wolf, Sebastian, Papuga, Shirley A., Wohlfahrt, Georg, Montagnani, Leonardo, Ardö, Jonas, Paul-Limoges, Eugénie, Emmel, Carmen, Hörtnagl, Lukas, Sachs, Torsten, Gruening, Carsten, Gioli, Beniamino, López-Ballesteros, Ana, Steinbrecher, Rainer, Gielen, Bert
Formato: Artículo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/1551
https://www.sciencedirect.com/science/article/pii/S0022169417305395
https://doi.org/10.1016/j.jhydrol.2017.08.013
_version_ 1855482905495601152
author Yunjun, Yao
Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
author_browse Ardö, Jonas
Beringer, Jason
Billesbach, D.P.
Boike, Julia
Buchmann, Nina
Changliang, Shao
Emmel, Carmen
Fisher, Joshua B.
Gielen, Bert
Gioli, Beniamino
Gruening, Carsten
Hörtnagl, Lukas
Jia, Xu
Jiquan, Chen
Kato, Tomomichi
Kun, Jia
Lilin, Zhang
López-Ballesteros, Ana
Macfarlane, Craig
Magliulo, Vincenzo
Montagnani, Leonardo
Moors, Eddy J.
Papuga, Shirley A.
Paul-Limoges, Eugénie
Posse Beaulieu, Gabriela
Sachs, Torsten
Shunlin, Liang
Steinbrecher, Rainer
Varlagin, Andrej
Wohlfahrt, Georg
Wolf, Sebastian
Xianglan, Li
Xiaotong, Zhang
Xuanyu, Wang
Yingnian, Li
Yuhu, Zhang
Yunjun, Yao
author_facet Yunjun, Yao
Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
author_sort Yunjun, Yao
collection INTA Digital
description Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models.
format Artículo
id INTA1551
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling INTA15512019-03-21T18:13:57Z Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method Yunjun, Yao Shunlin, Liang Yuhu, Zhang Jiquan, Chen Xianglan, Li Kun, Jia Xiaotong, Zhang Fisher, Joshua B. Xuanyu, Wang Lilin, Zhang Jia, Xu Changliang, Shao Posse Beaulieu, Gabriela Yingnian, Li Magliulo, Vincenzo Varlagin, Andrej Moors, Eddy J. Boike, Julia Macfarlane, Craig Kato, Tomomichi Buchmann, Nina Billesbach, D.P. Beringer, Jason Wolf, Sebastian Papuga, Shirley A. Wohlfahrt, Georg Montagnani, Leonardo Ardö, Jonas Paul-Limoges, Eugénie Emmel, Carmen Hörtnagl, Lukas Sachs, Torsten Gruening, Carsten Gioli, Beniamino López-Ballesteros, Ana Steinbrecher, Rainer Gielen, Bert Evapotranspiración Landsat Imágenes por Satélites Datos Atmosféricos Evapotranspiration Satellite Imagery Atmospheric Data Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models. Inst. de Clima y Agua Fil: Yunjun, Yao. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Shunlin, Liang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Xianglan, Li. Beijing Normal University. College of Global Change and Earth System Science; China Fil: Yuhu, Zhang. Capital Normal University. College of Resource Environment and Tourism; China Fil: Jiquan, Chen. Michigan State University. CGCEO/Geography; Estados Unidos Fil: Kun, Jia. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Xiaotong, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Fisher, Joshua B. California Institute of Technology. Jet Propulsion Laboratory; Estados Unidos Fil: Xuanyu, Wang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Lilin, Zhang. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Jia, Xu. Beijing Normal University. Faculty of Geographical Science. State Key Laboratory of Remote Sensing Science; China Fil: Changliang, Shao. Michigan State University. CGCEO/Geography; Estados Unidos Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Yingnian, Li. Chinese Academy of Sciences. Northwest Institute of Plateau Biology; China Fil: Magliulo, Vincenzo. Consiglio Nazionale delle Ricerche. Institute of Mediterranean Forest and Agricultural Systems; Italia Fil: Varlagin, Andrej. Russian Academy of Sciences. A.N. Severtsov Institute of Ecology and Evolution; Rusia Fil: Moors, Eddy J. Wageningen University and Research, Wageningen Environmental Research; Holanda Fil: Boike, Julia. Alfred Wegener Institute for Polar and Marine Research; Alemania Fil: Macfarlane, Craig. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water; Australia Fil: Kato, Tomomichi. Hokkaido University. Research Faculty of Agriculture; Japón Fil: Buchmann, Nina. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Billesbach, D.P. University of Nebraska. Department of Biological Systems Engineering and School of Natural Resources; Estados Unidos Fil: Beringer, Jason. University of Western Australia. School of Agriculture and Environment; Australia Fil: Wolf, Sebastian. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Papuga, Shirley A. University of Arizona. School of Natural Resources and the Environment; Estados Unidos Fil: Wohlfahrt, Georg. University of Innsbruck. Institute of Ecology; Austria Fil: Montagnani, Leonardo. Free University of Bolzano. Faculty of Science and Technology; Italia Fil: Ardö, Jonas. Lund University. Physical Geography and Ecosystem Science; Suecia Fil: Paul-Limoges, Eugénie. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Emmel, Carmen. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Hörtnagl, Lukas. ETH Zurich. Department of Environmental Systems Science; Suiza Fil: Sachs, Torsten. GFZ German Research Centre for Geosciences, Section Remote Sensing; Alemania Fil: Gruening, Carsten. European Commission, Joint Research Centre; Italia Fil: Gioli, Beniamino. National Research Council. Institute of Biometeorology; Italia Fil: López-Ballesteros, Ana. University of Granada. Faculty of Sciences. Department of Ecology; España Fil: Steinbrecher, Rainer. Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU); Alemania Fil: Gielen, Bert. University of Antwerp. Department of Biology. Centre of Excellence PLECO; Bélgica 2017-10-20T14:13:49Z 2017-10-20T14:13:49Z 2017-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/20.500.12123/1551 https://www.sciencedirect.com/science/article/pii/S0022169417305395 0022-1694 https://doi.org/10.1016/j.jhydrol.2017.08.013 eng info:eu-repo/semantics/restrictedAccess application/pdf Journal of hydrology 553 : 508-526. (October 2017)
spellingShingle Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
Yunjun, Yao
Shunlin, Liang
Yuhu, Zhang
Jiquan, Chen
Xianglan, Li
Kun, Jia
Xiaotong, Zhang
Fisher, Joshua B.
Xuanyu, Wang
Lilin, Zhang
Jia, Xu
Changliang, Shao
Posse Beaulieu, Gabriela
Yingnian, Li
Magliulo, Vincenzo
Varlagin, Andrej
Moors, Eddy J.
Boike, Julia
Macfarlane, Craig
Kato, Tomomichi
Buchmann, Nina
Billesbach, D.P.
Beringer, Jason
Wolf, Sebastian
Papuga, Shirley A.
Wohlfahrt, Georg
Montagnani, Leonardo
Ardö, Jonas
Paul-Limoges, Eugénie
Emmel, Carmen
Hörtnagl, Lukas
Sachs, Torsten
Gruening, Carsten
Gioli, Beniamino
López-Ballesteros, Ana
Steinbrecher, Rainer
Gielen, Bert
Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_full Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_fullStr Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_full_unstemmed Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_short Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
title_sort estimation of high resolution terrestrial evapotranspiration from landsat data using a simple taylor skill fusion method
topic Evapotranspiración
Landsat
Imágenes por Satélites
Datos Atmosféricos
Evapotranspiration
Satellite Imagery
Atmospheric Data
url http://hdl.handle.net/20.500.12123/1551
https://www.sciencedirect.com/science/article/pii/S0022169417305395
https://doi.org/10.1016/j.jhydrol.2017.08.013
work_keys_str_mv AT yunjunyao estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT shunlinliang estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT yuhuzhang estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT jiquanchen estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT xianglanli estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT kunjia estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT xiaotongzhang estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT fisherjoshuab estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT xuanyuwang estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT lilinzhang estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT jiaxu estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT changliangshao estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT possebeaulieugabriela estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT yingnianli estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT magliulovincenzo estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT varlaginandrej estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT moorseddyj estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT boikejulia estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT macfarlanecraig estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT katotomomichi estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT buchmannnina estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT billesbachdp estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT beringerjason estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT wolfsebastian estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT papugashirleya estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT wohlfahrtgeorg estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT montagnanileonardo estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT ardojonas estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT paullimogeseugenie estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT emmelcarmen estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT hortnagllukas estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT sachstorsten estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT grueningcarsten estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT giolibeniamino estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT lopezballesterosana estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT steinbrecherrainer estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod
AT gielenbert estimationofhighresolutionterrestrialevapotranspirationfromlandsatdatausingasimpletaylorskillfusionmethod