Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen

Nitrogen (N) nutrition index (NNI) is a reliable indicator of plant N status for field crops, but its determination is both labor- and cost-intensive. The utilization of remote sensing approaches for monitoring N, mainly in relevant crops such as of corn (Zea mays L.), will be critical for enhancing...

Full description

Bibliographic Details
Main Authors: Lapaz Olveira, Adrián, Castro Franco, Mauricio, Sainz Rozas, Hernan Rene, Carciochi, Walter, Balzarini, Mónica, Avila, Oscar, Ciampitti, Ignacio, Reussi Calvo, Nahuel Ignacio
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Springer 2023
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/15248
https://link.springer.com/article/10.1007/s11119-023-10054-4
https://doi.org/10.1007/s11119-023-10054-4
_version_ 1855037280001982464
author Lapaz Olveira, Adrián
Castro Franco, Mauricio
Sainz Rozas, Hernan Rene
Carciochi, Walter
Balzarini, Mónica
Avila, Oscar
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
author_browse Avila, Oscar
Balzarini, Mónica
Carciochi, Walter
Castro Franco, Mauricio
Ciampitti, Ignacio
Lapaz Olveira, Adrián
Reussi Calvo, Nahuel Ignacio
Sainz Rozas, Hernan Rene
author_facet Lapaz Olveira, Adrián
Castro Franco, Mauricio
Sainz Rozas, Hernan Rene
Carciochi, Walter
Balzarini, Mónica
Avila, Oscar
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
author_sort Lapaz Olveira, Adrián
collection INTA Digital
description Nitrogen (N) nutrition index (NNI) is a reliable indicator of plant N status for field crops, but its determination is both labor- and cost-intensive. The utilization of remote sensing approaches for monitoring N, mainly in relevant crops such as of corn (Zea mays L.), will be critical for enhancing effective use of this nutrient. Therefore, the aim of this study was to assess NNI predicted from optical and C-band Synthetic Aperture Radar (C-SAR) satellite data and available soil N (Nav) at different vegetative growth stages for corn crop. Eleven field studies were conducted in the Pampas region (Argentina), applying five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1), all at sowing time. Plant samples were collected at sixth-leaf (V6), tenth-leaf (V10), fourteen-leaf (V14), and flowering (R1). Using linear regression models, NNI was best predicted using only optical satellite data from V6 to V14, and integrating optical with C-SAR plus Nav at R1. The best monitoring model integrated vegetation spectral indices, C-SAR and Nav data at V10 with an adjusted R2 of 0.75 achieved during calibration in the northern Pampa. During validation, it predicted NNI with an RMSE of 0.14 and a MAPE of 12% in the southeastern Pampa. The red-edge spectrum and Local Incidence Angle of C-SAR were necessary to monitor the corn N status via prediction of NNI. Thus, this study provided empirical models to remotely sensed corn N status within fields during vegetative period, serving as a foundational data for guiding future N management.
format info:ar-repo/semantics/artículo
id INTA15248
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Springer
publisherStr Springer
record_format dspace
spelling INTA152482023-09-19T16:48:02Z Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen Lapaz Olveira, Adrián Castro Franco, Mauricio Sainz Rozas, Hernan Rene Carciochi, Walter Balzarini, Mónica Avila, Oscar Ciampitti, Ignacio Reussi Calvo, Nahuel Ignacio Maíz Nitrógeno Índices de Vegetación Nutrición Vigilancia Satélites Suelo Maize Nitrogen Vegetation Index Nutrition Monitoring Satellites Soil Nitrogen (N) nutrition index (NNI) is a reliable indicator of plant N status for field crops, but its determination is both labor- and cost-intensive. The utilization of remote sensing approaches for monitoring N, mainly in relevant crops such as of corn (Zea mays L.), will be critical for enhancing effective use of this nutrient. Therefore, the aim of this study was to assess NNI predicted from optical and C-band Synthetic Aperture Radar (C-SAR) satellite data and available soil N (Nav) at different vegetative growth stages for corn crop. Eleven field studies were conducted in the Pampas region (Argentina), applying five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1), all at sowing time. Plant samples were collected at sixth-leaf (V6), tenth-leaf (V10), fourteen-leaf (V14), and flowering (R1). Using linear regression models, NNI was best predicted using only optical satellite data from V6 to V14, and integrating optical with C-SAR plus Nav at R1. The best monitoring model integrated vegetation spectral indices, C-SAR and Nav data at V10 with an adjusted R2 of 0.75 achieved during calibration in the northern Pampa. During validation, it predicted NNI with an RMSE of 0.14 and a MAPE of 12% in the southeastern Pampa. The red-edge spectrum and Local Incidence Angle of C-SAR were necessary to monitor the corn N status via prediction of NNI. Thus, this study provided empirical models to remotely sensed corn N status within fields during vegetative period, serving as a foundational data for guiding future N management. EEA Balcarce Fil: Lapaz Olveira, Adrián. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Lapaz Olveira, Adrián. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Fil: Lapaz Olveira, Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Castro Franco, Mauricio. Universidad de los Llanos. Facultad de Ciencias Agropecuarias y Recursos Naturales; Colombia. Fil: Saínz Rozas, Hernán. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Fil: Saínz Rozas, Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Fil: Carciochi, Walter. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Carciochi, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Balzarini, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Balzarini, Mónica. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Fil: Balzarini, Mónica. Unidad de Fitopatología Y Modelización Agrícola; Argentina. Fil: Avila, Oscar. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Avila, Oscar. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Fil: Ciampitti, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos. Fil: Reussi Calvo, Nahuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Reussi Calvo, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. 2023-09-19T16:39:04Z 2023-09-19T16:39:04Z 2023-08 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/15248 https://link.springer.com/article/10.1007/s11119-023-10054-4 1573-1618 (online) 1385-2256 (print) https://doi.org/10.1007/s11119-023-10054-4 eng info:eu-repograntAgreement/INTA/2019-PE-E9-I177-001, Desarrollo y aplicación de tecnologías de mecanización, precisión y digitalización de la Agricultura info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Springer Precision Agriculture : 1-15 (Published: 04 August 2023)
spellingShingle Maíz
Nitrógeno
Índices de Vegetación
Nutrición
Vigilancia
Satélites
Suelo
Maize
Nitrogen
Vegetation Index
Nutrition
Monitoring
Satellites
Soil
Lapaz Olveira, Adrián
Castro Franco, Mauricio
Sainz Rozas, Hernan Rene
Carciochi, Walter
Balzarini, Mónica
Avila, Oscar
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title_full Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title_fullStr Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title_full_unstemmed Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title_short Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
title_sort monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen
topic Maíz
Nitrógeno
Índices de Vegetación
Nutrición
Vigilancia
Satélites
Suelo
Maize
Nitrogen
Vegetation Index
Nutrition
Monitoring
Satellites
Soil
url http://hdl.handle.net/20.500.12123/15248
https://link.springer.com/article/10.1007/s11119-023-10054-4
https://doi.org/10.1007/s11119-023-10054-4
work_keys_str_mv AT lapazolveiraadrian monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT castrofrancomauricio monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT sainzrozashernanrene monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT carciochiwalter monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT balzarinimonica monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT avilaoscar monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT ciampittiignacio monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen
AT reussicalvonahuelignacio monitoringcornnitrogennutritionindexfromopticalandsyntheticapertureradarsatellitedataandsoilavailablenitrogen