Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion

Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fu...

Full description

Bibliographic Details
Main Authors: Lapaz Olveira, Adrián, Sainz Rozas, Hernan Rene, Castro Franco, Mauricio, Carciochi, Walter, Nieto, Luciana, Balzarini, Mónica, Ciampitti, Ignacio, Reussi Calvo, Nahuel Ignacio
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Multidisciplinary Digital Publishing Institute (MDPI) 2023
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/15233
https://www.mdpi.com/2072-4292/15/3/824
https://doi.org/10.3390/rs15030824
_version_ 1855037278374592512
author Lapaz Olveira, Adrián
Sainz Rozas, Hernan Rene
Castro Franco, Mauricio
Carciochi, Walter
Nieto, Luciana
Balzarini, Mónica
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
author_browse Balzarini, Mónica
Carciochi, Walter
Castro Franco, Mauricio
Ciampitti, Ignacio
Lapaz Olveira, Adrián
Nieto, Luciana
Reussi Calvo, Nahuel Ignacio
Sainz Rozas, Hernan Rene
author_facet Lapaz Olveira, Adrián
Sainz Rozas, Hernan Rene
Castro Franco, Mauricio
Carciochi, Walter
Nieto, Luciana
Balzarini, Mónica
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
author_sort Lapaz Olveira, Adrián
collection INTA Digital
description Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status.
format info:ar-repo/semantics/artículo
id INTA15233
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Multidisciplinary Digital Publishing Institute (MDPI)
publisherStr Multidisciplinary Digital Publishing Institute (MDPI)
record_format dspace
spelling INTA152332023-09-18T10:30:39Z Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion Lapaz Olveira, Adrián Sainz Rozas, Hernan Rene Castro Franco, Mauricio Carciochi, Walter Nieto, Luciana Balzarini, Mónica Ciampitti, Ignacio Reussi Calvo, Nahuel Ignacio Vigilancia Nitrógeno Maíz Teledetección Satélites Sensores Monitoring Nitrogen Maize Remote Sensing Satellites Sensors Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status. EEA Balcarce Fil: Lapaz Olveira, Adrián. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Lapaz Olveira, Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Saínz Rozas, Hernán. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Fil: Saínz Rozas, Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Fil: Castro Franco, Mauricio. Universidad de los Llanos. Facultad de Ciencias Agropecuarias y Recursos Naturales; Colombia. Fil: Carciochi, Walter. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Carciochi, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Nieto, Luciana. Kansas State University. Department of Agronomy; Estados Unidos. Fil: Balzarini, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Balzarini, Mónica. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Fil: Balzarini, Mónica. Unidad de Fitopatología Y Modelización Agrícola; Argentina. Fil: Ciampitti, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos. Fil: Reussi Calvo, Nahuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Reussi Calvo, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. 2023-09-18T10:26:59Z 2023-09-18T10:26:59Z 2023-02 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/15233 https://www.mdpi.com/2072-4292/15/3/824 2072-4292 https://doi.org/10.3390/rs15030824 eng info:eu-repograntAgreement/INTA/2019-PE-E9-I177-001, Desarrollo y aplicación de tecnologías de mecanización, precisión y digitalización de la Agricultura info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Multidisciplinary Digital Publishing Institute (MDPI) Remote Sensing 15 (3) : 824 (2023)
spellingShingle Vigilancia
Nitrógeno
Maíz
Teledetección
Satélites
Sensores
Monitoring
Nitrogen
Maize
Remote Sensing
Satellites
Sensors
Lapaz Olveira, Adrián
Sainz Rozas, Hernan Rene
Castro Franco, Mauricio
Carciochi, Walter
Nieto, Luciana
Balzarini, Mónica
Ciampitti, Ignacio
Reussi Calvo, Nahuel Ignacio
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title_full Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title_fullStr Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title_full_unstemmed Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title_short Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
title_sort monitoring corn nitrogen concentration from radar c sar optical and sensor satellite data fusion
topic Vigilancia
Nitrógeno
Maíz
Teledetección
Satélites
Sensores
Monitoring
Nitrogen
Maize
Remote Sensing
Satellites
Sensors
url http://hdl.handle.net/20.500.12123/15233
https://www.mdpi.com/2072-4292/15/3/824
https://doi.org/10.3390/rs15030824
work_keys_str_mv AT lapazolveiraadrian monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT sainzrozashernanrene monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT castrofrancomauricio monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT carciochiwalter monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT nietoluciana monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT balzarinimonica monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT ciampittiignacio monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion
AT reussicalvonahuelignacio monitoringcornnitrogenconcentrationfromradarcsaropticalandsensorsatellitedatafusion