Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods

Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossini, Luca, Bruzzone, Octavio Augusto, Speranza, Stefano, Delfino, Ines
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Elsevier 2023
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/14849
https://www.sciencedirect.com/science/article/pii/S1574954123002613
https://doi.org/10.1016/j.ecoinf.2023.102232
_version_ 1855037194301865984
author Rossini, Luca
Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
author_browse Bruzzone, Octavio Augusto
Delfino, Ines
Rossini, Luca
Speranza, Stefano
author_facet Rossini, Luca
Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
author_sort Rossini, Luca
collection INTA Digital
description Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view.
format info:ar-repo/semantics/artículo
id INTA14849
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA148492023-08-01T17:15:06Z Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods Rossini, Luca Bruzzone, Octavio Augusto Speranza, Stefano Delfino, Ines Insecta Dinámica de Poblaciones Modelos Genética Algoritmos Population Dynamics Models Genetics Algorithms Decision support systems are gaining importance in several fields of agriculture, forest, and ecological systems management. Their predictive potential, entrusted to mathematical models, is of fundamental importance to set up opportune strategies to control pests and adversities that may occur and that may seriously compromise the natural equilibria. Among the others, population dynamics is one of the crucial challenges in the field. Despite the scientific community in recent years providing valuable models that faithfully represent terrestrial arthropods populations, such as insects, one of the main concerns is still represented by the parameter estimation. Parameters, in fact, characterise the species and their estimation are often entrusted to dedicated laboratory experiments that require specific equipment and highly qualified personnel. In this study we propose a novel method to estimate the model parameters directly from field data, where experimental activities are less expensive and less time consuming. In this study we propose a combination of least squares methods via genetic algorithms to preliminary evaluate the best parameter values and Markov Chain Monte Carlo approach to obtain their distribution. The algorithm has been tested in the special case of Drosophila suzukii, to quantify part of the parameters of an almost validated model in two steps: i) a first pseudo-validation using perturbed numerical solutions, and ii) a validation using real field data. The results highlighted the potentialities of the algorithm in estimating model parameters and opened several perspectives for further improvements from both the computational and experimental point of view. EEA Bariloche Fil: Rossini, Luca. Université Libre de Bruxelles. Service d'Automatique et d'Analyse des Systèmes; Bélgica Fil: Rossini, Luca. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Bruzzone, Octavio Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Speranza, Stefano. Università degli Studi della Tuscia. Dipartimento di Scienze Agrarie e Forestali; Italia Fil: Delfino, Ines. Università degli Studi della Tuscia. Dipartimento di Scienze Ecologiche e Biologiche; Italia 2023-08-01T17:11:59Z 2023-08-01T17:11:59Z 2023-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/14849 https://www.sciencedirect.com/science/article/pii/S1574954123002613 1574-9541 1878-0512 https://doi.org/10.1016/j.ecoinf.2023.102232 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Ecological Informatics 77 : 102232. (November 2023)
spellingShingle Insecta
Dinámica de Poblaciones
Modelos
Genética
Algoritmos
Population Dynamics
Models
Genetics
Algorithms
Rossini, Luca
Bruzzone, Octavio Augusto
Speranza, Stefano
Delfino, Ines
Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_full Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_fullStr Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_full_unstemmed Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_short Estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm MCMC methods
title_sort estimation and analysis of insect population dynamics parameters via physiologically based models and hybrid genetic algorithm mcmc methods
topic Insecta
Dinámica de Poblaciones
Modelos
Genética
Algoritmos
Population Dynamics
Models
Genetics
Algorithms
url http://hdl.handle.net/20.500.12123/14849
https://www.sciencedirect.com/science/article/pii/S1574954123002613
https://doi.org/10.1016/j.ecoinf.2023.102232
work_keys_str_mv AT rossiniluca estimationandanalysisofinsectpopulationdynamicsparametersviaphysiologicallybasedmodelsandhybridgeneticalgorithmmcmcmethods
AT bruzzoneoctavioaugusto estimationandanalysisofinsectpopulationdynamicsparametersviaphysiologicallybasedmodelsandhybridgeneticalgorithmmcmcmethods
AT speranzastefano estimationandanalysisofinsectpopulationdynamicsparametersviaphysiologicallybasedmodelsandhybridgeneticalgorithmmcmcmethods
AT delfinoines estimationandanalysisofinsectpopulationdynamicsparametersviaphysiologicallybasedmodelsandhybridgeneticalgorithmmcmcmethods