Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach
Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential...
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | info:ar-repo/semantics/artículo |
| Language: | Inglés |
| Published: |
MDPI
2023
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/14758 https://www.mdpi.com/2073-4395/9/10/663 https://doi.org/10.3390/agronomy9100663 |
| _version_ | 1855037176579883008 |
|---|---|
| author | Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José |
| author_browse | Belfiore, Oscar Rosario Delegido, Jesús D’Urso, Guido Falanga Bolognesi, Salvatore Moreno, José Pasqualotto, Nieves Pezzola, Nestor Alejandro Winschel, Cristina Ines Wittenberghe, Shari Van |
| author_facet | Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José |
| author_sort | Pasqualotto, Nieves |
| collection | INTA Digital |
| description | Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas. |
| format | info:ar-repo/semantics/artículo |
| id | INTA14758 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2023 |
| publishDateRange | 2023 |
| publishDateSort | 2023 |
| publisher | MDPI |
| publisherStr | MDPI |
| record_format | dspace |
| spelling | INTA147582023-07-17T12:42:19Z Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas. EEA Hilario Ascasubi Fil: Pasqualotto, Nieves. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: D’Urso, Guido. University of Naples Federico II. Department of Agricultural Sciences; Italia Fil: Falanga Bolognesi, Salvatore. University of Napoli Federico II. ARIESPACE s.r.l.; Italia Fil: Belfiore, Oscar Rosario. University of Napoli Federico II. ARIESPACE s.r.l.; Italia Fil: Wittenberghe, Shari Van. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Moreno, José. Universidad de Valencia. Image Processing Laboratory (IPL); España 2023-07-17T12:37:47Z 2023-07-17T12:37:47Z 2019-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/14758 https://www.mdpi.com/2073-4395/9/10/663 2073-4395 https://doi.org/10.3390/agronomy9100663 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Agronomy 9 (10) : 663 (2019) |
| spellingShingle | Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 Pasqualotto, Nieves D’Urso, Guido Falanga Bolognesi, Salvatore Belfiore, Oscar Rosario Wittenberghe, Shari Van Delegido, Jesús Pezzola, Nestor Alejandro Winschel, Cristina Ines Moreno, José Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title | Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title_full | Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title_fullStr | Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title_full_unstemmed | Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title_short | Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach |
| title_sort | retrieval of evapotranspiration from sentinel 2 comparison of vegetation indices semi empirical models and snap biophysical processor approach |
| topic | Teledetección Evapotranspiración Indice de Vegetación Índice de Superficie Foliar Remote Sensing Evapotranspiration Vegetation Index Leaf Area Index Sentinel - 2 |
| url | http://hdl.handle.net/20.500.12123/14758 https://www.mdpi.com/2073-4395/9/10/663 https://doi.org/10.3390/agronomy9100663 |
| work_keys_str_mv | AT pasqualottonieves retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT dursoguido retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT falangabolognesisalvatore retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT belfioreoscarrosario retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT wittenberghesharivan retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT delegidojesus retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT pezzolanestoralejandro retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT winschelcristinaines retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach AT morenojose retrievalofevapotranspirationfromsentinel2comparisonofvegetationindicessemiempiricalmodelsandsnapbiophysicalprocessorapproach |