Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are...
| Autores principales: | , , , , , , , , , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 https://doi.org/10.1016/j.ecolind.2013.05.007 |
| _version_ | 1855034805144518656 |
|---|---|
| author | Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás |
| author_browse | Bran, Donaldo Eduardo Buono, Gustavo Gabriel Celdran, Diego Javier Ciari, Georgina Ferrante, Daniela Gaitan, Juan Jose Humano, Gervasio Maestre, Fernando Tomás Massara Paletto, Virginia Nakamatsu, Viviana Beatriz Oliva, Gabriel Esteban Opazo, Walter Javier Salomone, Jorge Manuel |
| author_facet | Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás |
| author_sort | Gaitan, Juan Jose |
| collection | INTA Digital |
| description | Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale. |
| format | info:ar-repo/semantics/artículo |
| id | INTA1449 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2017 |
| publishDateRange | 2017 |
| publishDateSort | 2017 |
| record_format | dspace |
| spelling | INTA14492019-12-16T17:09:52Z Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale. Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Salomone, Jorge Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Celdran, Diego Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Opazo, Walter Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; España 2017-10-10T13:47:30Z 2017-10-10T13:47:30Z 2013-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 1470-160X https://doi.org/10.1016/j.ecolind.2013.05.007 eng info:eu-repo/semantics/restrictedAccess application/pdf Patagonia (general region) Ecological indicators 34 : 181-191. (Nov. 2013) |
| spellingShingle | Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title | Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title_full | Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title_fullStr | Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title_full_unstemmed | Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title_short | Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes |
| title_sort | evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in patagonian steppes |
| topic | Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica |
| url | http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 https://doi.org/10.1016/j.ecolind.2013.05.007 |
| work_keys_str_mv | AT gaitanjuanjose evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT brandonaldoeduardo evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT olivagabrielesteban evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT ciarigeorgina evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT nakamatsuvivianabeatriz evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT salomonejorgemanuel evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT ferrantedaniela evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT buonogustavogabriel evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT massarapalettovirginia evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT humanogervasio evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT celdrandiegojavier evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT opazowalterjavier evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes AT maestrefernandotomas evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes |