Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes

Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaitan, Juan Jose, Bran, Donaldo Eduardo, Oliva, Gabriel Esteban, Ciari, Georgina, Nakamatsu, Viviana Beatriz, Salomone, Jorge Manuel, Ferrante, Daniela, Buono, Gustavo Gabriel, Massara Paletto, Virginia, Humano, Gervasio, Celdran, Diego Javier, Opazo, Walter Javier, Maestre, Fernando Tomás
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/1449
http://www.sciencedirect.com/science/article/pii/S1470160X13002033
https://doi.org/10.1016/j.ecolind.2013.05.007
_version_ 1855034805144518656
author Gaitan, Juan Jose
Bran, Donaldo Eduardo
Oliva, Gabriel Esteban
Ciari, Georgina
Nakamatsu, Viviana Beatriz
Salomone, Jorge Manuel
Ferrante, Daniela
Buono, Gustavo Gabriel
Massara Paletto, Virginia
Humano, Gervasio
Celdran, Diego Javier
Opazo, Walter Javier
Maestre, Fernando Tomás
author_browse Bran, Donaldo Eduardo
Buono, Gustavo Gabriel
Celdran, Diego Javier
Ciari, Georgina
Ferrante, Daniela
Gaitan, Juan Jose
Humano, Gervasio
Maestre, Fernando Tomás
Massara Paletto, Virginia
Nakamatsu, Viviana Beatriz
Oliva, Gabriel Esteban
Opazo, Walter Javier
Salomone, Jorge Manuel
author_facet Gaitan, Juan Jose
Bran, Donaldo Eduardo
Oliva, Gabriel Esteban
Ciari, Georgina
Nakamatsu, Viviana Beatriz
Salomone, Jorge Manuel
Ferrante, Daniela
Buono, Gustavo Gabriel
Massara Paletto, Virginia
Humano, Gervasio
Celdran, Diego Javier
Opazo, Walter Javier
Maestre, Fernando Tomás
author_sort Gaitan, Juan Jose
collection INTA Digital
description Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.
format info:ar-repo/semantics/artículo
id INTA1449
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling INTA14492019-12-16T17:09:52Z Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes Gaitan, Juan Jose Bran, Donaldo Eduardo Oliva, Gabriel Esteban Ciari, Georgina Nakamatsu, Viviana Beatriz Salomone, Jorge Manuel Ferrante, Daniela Buono, Gustavo Gabriel Massara Paletto, Virginia Humano, Gervasio Celdran, Diego Javier Opazo, Walter Javier Maestre, Fernando Tomás Desertificación Desertification Ecosystems Vegetation Remote Sensing Spatial Distribution Ecosistema Vegetación Teledetección Distribución Espacial Vegetation Indices Landscape Function Analysis Región Patagónica Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale. Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Ciari, Georgina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Nakamatsu, Viviana Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Salomone, Jorge Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina Fil: Celdran, Diego Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Opazo, Walter Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; España 2017-10-10T13:47:30Z 2017-10-10T13:47:30Z 2013-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/1449 http://www.sciencedirect.com/science/article/pii/S1470160X13002033 1470-160X https://doi.org/10.1016/j.ecolind.2013.05.007 eng info:eu-repo/semantics/restrictedAccess application/pdf Patagonia (general region) Ecological indicators 34 : 181-191. (Nov. 2013)
spellingShingle Desertificación
Desertification
Ecosystems
Vegetation
Remote Sensing
Spatial Distribution
Ecosistema
Vegetación
Teledetección
Distribución Espacial
Vegetation Indices
Landscape Function Analysis
Región Patagónica
Gaitan, Juan Jose
Bran, Donaldo Eduardo
Oliva, Gabriel Esteban
Ciari, Georgina
Nakamatsu, Viviana Beatriz
Salomone, Jorge Manuel
Ferrante, Daniela
Buono, Gustavo Gabriel
Massara Paletto, Virginia
Humano, Gervasio
Celdran, Diego Javier
Opazo, Walter Javier
Maestre, Fernando Tomás
Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title_full Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title_fullStr Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title_full_unstemmed Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title_short Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes
title_sort evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in patagonian steppes
topic Desertificación
Desertification
Ecosystems
Vegetation
Remote Sensing
Spatial Distribution
Ecosistema
Vegetación
Teledetección
Distribución Espacial
Vegetation Indices
Landscape Function Analysis
Región Patagónica
url http://hdl.handle.net/20.500.12123/1449
http://www.sciencedirect.com/science/article/pii/S1470160X13002033
https://doi.org/10.1016/j.ecolind.2013.05.007
work_keys_str_mv AT gaitanjuanjose evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT brandonaldoeduardo evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT olivagabrielesteban evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT ciarigeorgina evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT nakamatsuvivianabeatriz evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT salomonejorgemanuel evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT ferrantedaniela evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT buonogustavogabriel evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT massarapalettovirginia evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT humanogervasio evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT celdrandiegojavier evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT opazowalterjavier evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes
AT maestrefernandotomas evaluatingtheperformanceofmultipleremotesensingindicestopredictthespatialvariabilityofecosystemstructureandfunctioninginpatagoniansteppes