Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected

Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. M...

Descripción completa

Detalles Bibliográficos
Autores principales: Simões, R., Alves, A., Pathauer, Pablo Santiago, Palazzini, Dino, Marcucci Poltri, Susana Noemi, Rodrigues, J.
Formato: Artículo
Lenguaje:Inglés
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/13723
https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.2096072
https://doi.org/10.1080/02773813.2022.2096072
_version_ 1855485225679716352
author Simões, R.
Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
author_browse Alves, A.
Marcucci Poltri, Susana Noemi
Palazzini, Dino
Pathauer, Pablo Santiago
Rodrigues, J.
Simões, R.
author_facet Simões, R.
Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
author_sort Simões, R.
collection INTA Digital
description Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers.
format Artículo
id INTA13723
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Taylor & Francis
publisherStr Taylor & Francis
record_format dspace
spelling INTA137232022-12-27T12:38:56Z Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected Simões, R. Alves, A. Pathauer, Pablo Santiago Palazzini, Dino Marcucci Poltri, Susana Noemi Rodrigues, J. Outlier Analysis Capital Eucalyptus globulus Valores Atípicos Validación Validation Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers. Fil: Simoes, R. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal Fil: Alves, A. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal Fil: Pathauer, Pablo Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Palazzini, Dino A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marcucci Poltri, Susana Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rodrigues, J. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal 2022-12-27T12:30:07Z 2022-12-27T12:30:07Z 2022-07-08 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13723 https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.2096072 1532-2319 https://doi.org/10.1080/02773813.2022.2096072 eng info:eu-repo/semantics/restrictedAccess application/pdf Taylor & Francis Journal of wood chemistry and technology 42 (5) : 352-360 (2022)
spellingShingle Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
Simões, R.
Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_full Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_fullStr Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_full_unstemmed Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_short Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_sort prediction of the extractives content of eucalyptus globulus wood using nirbased pls r models influence of spectral range and preprocessing on the percentage of outliers detected
topic Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
url http://hdl.handle.net/20.500.12123/13723
https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.2096072
https://doi.org/10.1080/02773813.2022.2096072
work_keys_str_mv AT simoesr predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected
AT alvesa predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected
AT pathauerpablosantiago predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected
AT palazzinidino predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected
AT marcuccipoltrisusananoemi predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected
AT rodriguesj predictionoftheextractivescontentofeucalyptusglobuluswoodusingnirbasedplsrmodelsinfluenceofspectralrangeandpreprocessingonthepercentageofoutliersdetected