Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles

Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from s...

Full description

Bibliographic Details
Main Authors: Caballero, Gabriel, Pezzola, Nestor Alejandro, Winschel, Cristina Ines, Casella, Alejandra An, Sanchez Angonova, Paolo Andres, Orden, Luciano, Berger, Katja, Verrelst, Jochem, Delegido, Jesús
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: MDPI 2022
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/13525
https://www.mdpi.com/2072-4292/14/22/5867
https://doi.org/10.3390/rs14225867
_version_ 1855036953267798016
author Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_browse Berger, Katja
Caballero, Gabriel
Casella, Alejandra An
Delegido, Jesús
Orden, Luciano
Pezzola, Nestor Alejandro
Sanchez Angonova, Paolo Andres
Verrelst, Jochem
Winschel, Cristina Ines
author_facet Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_sort Caballero, Gabriel
collection INTA Digital
description Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.
format info:ar-repo/semantics/artículo
id INTA13525
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA135252022-12-02T14:34:19Z Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Orden, Luciano Berger, Katja Verrelst, Jochem Delegido, Jesús Índice de Superficie Foliar Trigo Invierno Imágenes por Satélites Riego Leaf Area Index Wheat Winter Satellite Imagery Irrigation Sentinel-1 Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments. EEA Hilario Ascasubi Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay Fil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; España Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España Fil: Berger, Katja. Mantle Labs GmbH; Austria Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España 2022-12-02T14:29:02Z 2022-12-02T14:29:02Z 2022-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13525 https://www.mdpi.com/2072-4292/14/22/5867 2072-4292 https://doi.org/10.3390/rs14225867 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Argentina .......... (nation) (World, South America) 7006477 MDPI Remote Sensing 14 (22) : 5867. (November 2022)
spellingShingle Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Orden, Luciano
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_full Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_fullStr Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_full_unstemmed Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_short Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
title_sort quantifying irrigated winter wheat lai in argentina using multiple sentinel 1 incidence angles
topic Índice de Superficie Foliar
Trigo
Invierno
Imágenes por Satélites
Riego
Leaf Area Index
Wheat
Winter
Satellite Imagery
Irrigation
Sentinel-1
url http://hdl.handle.net/20.500.12123/13525
https://www.mdpi.com/2072-4292/14/22/5867
https://doi.org/10.3390/rs14225867
work_keys_str_mv AT caballerogabriel quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT pezzolanestoralejandro quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT winschelcristinaines quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT casellaalejandraan quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT sanchezangonovapaoloandres quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT ordenluciano quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT bergerkatja quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT verrelstjochem quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles
AT delegidojesus quantifyingirrigatedwinterwheatlaiinargentinausingmultiplesentinel1incidenceangles