Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is parti...

Full description

Bibliographic Details
Main Authors: Caballero, Gabriel, Pezzola, Nestor Alejandro, Winschel, Cristina Ines, Casella, Alejandra An, Sanchez Angonova, Paolo Andres, Rivera Caicedo, Juan Pablo, Berger, Katja, Verrelst, Jochem, Delegido, Jesús
Format: Artículo
Language:Inglés
Published: MDPI 2022
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/13248
https://www.mdpi.com/2072-4292/14/18/4531
https://doi.org/10.3390/rs14184531
_version_ 1855485134601453568
author Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_browse Berger, Katja
Caballero, Gabriel
Casella, Alejandra An
Delegido, Jesús
Pezzola, Nestor Alejandro
Rivera Caicedo, Juan Pablo
Sanchez Angonova, Paolo Andres
Verrelst, Jochem
Winschel, Cristina Ines
author_facet Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
author_sort Caballero, Gabriel
collection INTA Digital
description Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
format Artículo
id INTA13248
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA132482022-12-02T14:06:26Z Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery Caballero, Gabriel Pezzola, Nestor Alejandro Winschel, Cristina Ines Casella, Alejandra An Sanchez Angonova, Paolo Andres Rivera Caicedo, Juan Pablo Berger, Katja Verrelst, Jochem Delegido, Jesús Leaf Area Index Kriging Imagery Índice de Superficie Foliar Krigeage Imágenes Vegetation Water and Chlorophyll Content Hybrid Retrieval Workflow Dimencionality Reduction Active Learning Contenido de Agua y Clorofila de la Vegetación Flujo de Trabajo de Recuperación Híbrido Reducción de Dimensionalidad Aprendizaje Activo Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions. Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); España Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; México Fil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; Austria Fil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); España Fil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); España 2022-10-28T12:24:07Z 2022-10-28T12:24:07Z 2022-09-10 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13248 https://www.mdpi.com/2072-4292/14/18/4531 2072-4292 https://doi.org/10.3390/rs14184531 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Remote Sensing 14 (18) : 4531. (September 2022)
spellingShingle Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
Caballero, Gabriel
Pezzola, Nestor Alejandro
Winschel, Cristina Ines
Casella, Alejandra An
Sanchez Angonova, Paolo Andres
Rivera Caicedo, Juan Pablo
Berger, Katja
Verrelst, Jochem
Delegido, Jesús
Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_full Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_fullStr Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_full_unstemmed Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_short Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery
title_sort seasonal mapping of irrigated winter wheat traits in argentina with a hybrid retrieval workflow using sentinel 2 imagery
topic Leaf Area Index
Kriging
Imagery
Índice de Superficie Foliar
Krigeage
Imágenes
Vegetation Water and Chlorophyll Content
Hybrid Retrieval Workflow
Dimencionality Reduction
Active Learning
Contenido de Agua y Clorofila de la Vegetación
Flujo de Trabajo de Recuperación Híbrido
Reducción de Dimensionalidad
Aprendizaje Activo
url http://hdl.handle.net/20.500.12123/13248
https://www.mdpi.com/2072-4292/14/18/4531
https://doi.org/10.3390/rs14184531
work_keys_str_mv AT caballerogabriel seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT pezzolanestoralejandro seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT winschelcristinaines seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT casellaalejandraan seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT sanchezangonovapaoloandres seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT riveracaicedojuanpablo seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT bergerkatja seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT verrelstjochem seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery
AT delegidojesus seasonalmappingofirrigatedwinterwheattraitsinargentinawithahybridretrievalworkflowusingsentinel2imagery