Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine

Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engel...

Descripción completa

Detalles Bibliográficos
Autores principales: Cappa, Eduardo Pablo, Chen, Charles, Klutsch, Jennifer G., Azcona, Jaime Sebastián, Ratcliffe, Blaise, Wei, Xiaojing, Da Ros, Letitia, Ullah, Aziz, Liu, Yang, Benowicz, Andy, Sadoway, Shane, Mansfield, Shawn D., Erbilgin, Nadir, Thomas, Barb R., El-Kassaby, Yousry A.
Formato: Artículo
Lenguaje:Inglés
Publicado: BMC 2022
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/13117
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-7
https://doi.org/10.1186/s12864-022-08747-7
_version_ 1855485108413267968
author Cappa, Eduardo Pablo
Chen, Charles
Klutsch, Jennifer G.
Azcona, Jaime Sebastián
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Ullah, Aziz
Liu, Yang
Benowicz, Andy
Sadoway, Shane
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author_browse Azcona, Jaime Sebastián
Benowicz, Andy
Cappa, Eduardo Pablo
Chen, Charles
Da Ros, Letitia
El-Kassaby, Yousry A.
Erbilgin, Nadir
Klutsch, Jennifer G.
Liu, Yang
Mansfield, Shawn D.
Ratcliffe, Blaise
Sadoway, Shane
Thomas, Barb R.
Ullah, Aziz
Wei, Xiaojing
author_facet Cappa, Eduardo Pablo
Chen, Charles
Klutsch, Jennifer G.
Azcona, Jaime Sebastián
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Ullah, Aziz
Liu, Yang
Benowicz, Andy
Sadoway, Shane
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
author_sort Cappa, Eduardo Pablo
collection INTA Digital
description Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. Results: MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. Conclusions: The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date.
format Artículo
id INTA13117
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher BMC
publisherStr BMC
record_format dspace
spelling INTA131172022-10-14T11:33:29Z Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine Cappa, Eduardo Pablo Chen, Charles Klutsch, Jennifer G. Azcona, Jaime Sebastián Ratcliffe, Blaise Wei, Xiaojing Da Ros, Letitia Ullah, Aziz Liu, Yang Benowicz, Andy Sadoway, Shane Mansfield, Shawn D. Erbilgin, Nadir Thomas, Barb R. El-Kassaby, Yousry A. Parámetros Genéticos Genómica Cambio Climático Pinus Genetic Parameters Genomics Climate Change Quantitative Genetic Parameters Genomic Prediction Parámetros Genéticos Cuantitativos Predicción Genómica Genome Wide Association Analysis Análisis de Asociación del Genoma Completo Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. Results: MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. Conclusions: The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date. Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados Unidos Fil: Klutsch, Jenifer G. University of Alberta. Department of Renewable Resources; Canada Fil: Azcona, Jaime Sebastián. University of Alberta. Department of Renewable Resources; Canadá. Instituto de Recursos Naturales y Agrobiología de Sevilla; España Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: Wei, Xiaojimg. University of Alberta. Department of Renewable Resources; Canadá Fil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá Fil: Ullah, Aziz. University of Alberta. Department of Renewable Resources; Canadá Fil: Liu, Yang. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; Canadá Fil: Sadoway, Shane. Blue Ridge Lumber Inc.; Canadá Fil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá Fil: Erbilgin, Nadir. University of Alberta. Department of Renewable Resources; Canadá Fil: Thomas, Barb R. University of Alberta. Department of Renewable Resources; Canada Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá 2022-10-14T11:19:29Z 2022-10-14T11:19:29Z 2022-07-23 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/13117 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-7 1471-2164 https://doi.org/10.1186/s12864-022-08747-7 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf BMC BMC Genomics 23 : 536 (2022)
spellingShingle Parámetros Genéticos
Genómica
Cambio Climático
Pinus
Genetic Parameters
Genomics
Climate Change
Quantitative Genetic Parameters
Genomic Prediction
Parámetros Genéticos Cuantitativos
Predicción Genómica
Genome Wide Association Analysis
Análisis de Asociación del Genoma Completo
Cappa, Eduardo Pablo
Chen, Charles
Klutsch, Jennifer G.
Azcona, Jaime Sebastián
Ratcliffe, Blaise
Wei, Xiaojing
Da Ros, Letitia
Ullah, Aziz
Liu, Yang
Benowicz, Andy
Sadoway, Shane
Mansfield, Shawn D.
Erbilgin, Nadir
Thomas, Barb R.
El-Kassaby, Yousry A.
Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title_full Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title_fullStr Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title_full_unstemmed Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title_short Multiple-trait analyses improved the accurary of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine
title_sort multiple trait analyses improved the accurary of genomic prediction and the power of genome wide association of productivity and climate change adaptive traits in lodgepole pine
topic Parámetros Genéticos
Genómica
Cambio Climático
Pinus
Genetic Parameters
Genomics
Climate Change
Quantitative Genetic Parameters
Genomic Prediction
Parámetros Genéticos Cuantitativos
Predicción Genómica
Genome Wide Association Analysis
Análisis de Asociación del Genoma Completo
url http://hdl.handle.net/20.500.12123/13117
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08747-7
https://doi.org/10.1186/s12864-022-08747-7
work_keys_str_mv AT cappaeduardopablo multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT chencharles multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT klutschjenniferg multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT azconajaimesebastian multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT ratcliffeblaise multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT weixiaojing multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT darosletitia multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT ullahaziz multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT liuyang multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT benowiczandy multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT sadowayshane multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT mansfieldshawnd multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT erbilginnadir multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT thomasbarbr multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine
AT elkassabyyousrya multipletraitanalysesimprovedtheaccuraryofgenomicpredictionandthepowerofgenomewideassociationofproductivityandclimatechangeadaptivetraitsinlodgepolepine