Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials

Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear...

Descripción completa

Detalles Bibliográficos
Autores principales: Angelini, Julia, Bortolotto, Eugenia Belén, Faviere, Gabriela Soledad, Pairoba, Claudio Fabián, Valentini, Gabriel Hugo, Cervigni, Gerardo Domingo Lucio
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Springer Nature 2022
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/12355
https://link.springer.com/article/10.1007/s10681-022-03063-3
https://doi.org/10.1007/s10681-022-03063-3
_version_ 1855036741499486208
author Angelini, Julia
Bortolotto, Eugenia Belén
Faviere, Gabriela Soledad
Pairoba, Claudio Fabián
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
author_browse Angelini, Julia
Bortolotto, Eugenia Belén
Cervigni, Gerardo Domingo Lucio
Faviere, Gabriela Soledad
Pairoba, Claudio Fabián
Valentini, Gabriel Hugo
author_facet Angelini, Julia
Bortolotto, Eugenia Belén
Faviere, Gabriela Soledad
Pairoba, Claudio Fabián
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
author_sort Angelini, Julia
collection INTA Digital
description Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.
format info:ar-repo/semantics/artículo
id INTA12355
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Springer Nature
publisherStr Springer Nature
record_format dspace
spelling INTA123552022-07-19T19:05:48Z Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials Angelini, Julia Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio Durazno Prunus persica Modelos Lineales Modelos Estadísticos Fitomejoramiento Interacción Genotipo Ambiente Peaches Best Linear Unbiased Predictor Linear Models Statistical Models Plant Breeding Genetic Gain Genotype Environment Interaction Mejora Genética BLUP Linear Mixed Model Multienvironment Trials Modelo Lineal Mixto Ganancia Genética Ensayos Multiambientales Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes. EEA San Pedro Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Bortolotto, Eugenia Belén. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Faviere, Gabriela Soledad. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnología; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina 2022-07-19T18:57:42Z 2022-07-19T18:57:42Z 2022-07 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/12355 https://link.springer.com/article/10.1007/s10681-022-03063-3 1573-5060 0014-2336 https://doi.org/10.1007/s10681-022-03063-3 eng info:eu-repo/semantics/restrictedAccess application/pdf Springer Nature Euphytica 218 (8) : 107. (jul. 2022)
spellingShingle Durazno
Prunus persica
Modelos Lineales
Modelos Estadísticos
Fitomejoramiento
Interacción Genotipo Ambiente
Peaches
Best Linear Unbiased Predictor
Linear Models
Statistical Models
Plant Breeding
Genetic Gain
Genotype Environment Interaction
Mejora Genética
BLUP
Linear Mixed Model
Multienvironment Trials
Modelo Lineal Mixto
Ganancia Genética
Ensayos Multiambientales
Angelini, Julia
Bortolotto, Eugenia Belén
Faviere, Gabriela Soledad
Pairoba, Claudio Fabián
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title_full Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title_fullStr Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title_full_unstemmed Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title_short Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
title_sort parameter estimation and selection efficiency under bayesian and frequentist approaches in peach trials
topic Durazno
Prunus persica
Modelos Lineales
Modelos Estadísticos
Fitomejoramiento
Interacción Genotipo Ambiente
Peaches
Best Linear Unbiased Predictor
Linear Models
Statistical Models
Plant Breeding
Genetic Gain
Genotype Environment Interaction
Mejora Genética
BLUP
Linear Mixed Model
Multienvironment Trials
Modelo Lineal Mixto
Ganancia Genética
Ensayos Multiambientales
url http://hdl.handle.net/20.500.12123/12355
https://link.springer.com/article/10.1007/s10681-022-03063-3
https://doi.org/10.1007/s10681-022-03063-3
work_keys_str_mv AT angelinijulia parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials
AT bortolottoeugeniabelen parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials
AT favieregabrielasoledad parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials
AT pairobaclaudiofabian parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials
AT valentinigabrielhugo parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials
AT cervignigerardodomingolucio parameterestimationandselectionefficiencyunderbayesianandfrequentistapproachesinpeachtrials