Are remote sensing evapotranspiration models reliable across South American ecoregions?
Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide t...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | info:ar-repo/semantics/artículo |
| Language: | Inglés |
| Published: |
Wiley
2022
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12123/11670 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028752 https://doi.org/10.1029/2020WR028752 |
| _version_ | 1855036575301238784 |
|---|---|
| author | Melo, D.C.D. Anache, J.A.A. Borges, V.P. Miralles, D.G. Martens, B. Fisher, J.B. Nobrega, R.C.B. Moreno, A. Cabral, O.M.R. Rodrigues, T.R. Bezerra, B. Silva, C.M.S. Meira Neto, A.A. Moura, M.S.B. Marques, T.V. Campos, S. Nogueira, J.S. Rosolem, R. Souza, R. Antonino, A.C.D. Holl, D. Galleguillos, M. Perez-Quezada, J.F. Verhoef, A. Kutzbach, L. Lima, J.R.S. Souza, E.S. Gassman, M.I. Perez, C.F. Tonti, N. Posse Beaulieu, Gabriela Rains, D. Oliveira, P.T.S. Wendland, E. |
| author_browse | Anache, J.A.A. Antonino, A.C.D. Bezerra, B. Borges, V.P. Cabral, O.M.R. Campos, S. Fisher, J.B. Galleguillos, M. Gassman, M.I. Holl, D. Kutzbach, L. Lima, J.R.S. Marques, T.V. Martens, B. Meira Neto, A.A. Melo, D.C.D. Miralles, D.G. Moreno, A. Moura, M.S.B. Nobrega, R.C.B. Nogueira, J.S. Oliveira, P.T.S. Perez, C.F. Perez-Quezada, J.F. Posse Beaulieu, Gabriela Rains, D. Rodrigues, T.R. Rosolem, R. Silva, C.M.S. Souza, E.S. Souza, R. Tonti, N. Verhoef, A. Wendland, E. |
| author_facet | Melo, D.C.D. Anache, J.A.A. Borges, V.P. Miralles, D.G. Martens, B. Fisher, J.B. Nobrega, R.C.B. Moreno, A. Cabral, O.M.R. Rodrigues, T.R. Bezerra, B. Silva, C.M.S. Meira Neto, A.A. Moura, M.S.B. Marques, T.V. Campos, S. Nogueira, J.S. Rosolem, R. Souza, R. Antonino, A.C.D. Holl, D. Galleguillos, M. Perez-Quezada, J.F. Verhoef, A. Kutzbach, L. Lima, J.R.S. Souza, E.S. Gassman, M.I. Perez, C.F. Tonti, N. Posse Beaulieu, Gabriela Rains, D. Oliveira, P.T.S. Wendland, E. |
| author_sort | Melo, D.C.D. |
| collection | INTA Digital |
| description | Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). E ET was predicted satisfactorily by all four models, with correlations consistently higher (20.6ER) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias ( 1010EPBIAS%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.MELO ET AL.© 2021. American Geophysical Union. All Rights Reserved.Are Remote Sensing Evapotranspiration Models Reliable Across South American Ecoregions?D. C. D. Melo1, J. A. A. Anache2, V. P. Borges1, D. G. Miralles3, B. Martens3, J. B. Fisher4, R. L. B. Nóbrega5, A. Moreno6, O. M. R. Cabral7, T. R. Rodrigues2, B. Bezerra8,9, C. M. S. Silva8,9, A. A. Meira Neto10, M. S. B. Moura11, T. V. Marques9, S. Campos9, J. S. Nogueira12, R. Rosolem13, R. M. S. Souza14, A. C. D. Antonino15, D. Holl16, M. Galleguillos17, J. F. Perez-Quezada17,18, A. Verhoef19, L. Kutzbach16, J. R. S. Lima20, E. S. Souza21, M. I. Gassman22,23, C. F. Perez22,23, N. Tonti22, G. Posse24, D. Rains3, P. T. S. Oliveira2, and E. Wendland251Federal University of Paraíba, Areia, PB, Brazil, 2Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil, 3Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium, 4Schmid College of Science and Technology, Chapman University, Orange, CA, USA, 5Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK, 6Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, USA, 7Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil, 8Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil, 9Climate Sciences Graduate Program, Federal University of Rio Grande do Norte, Natal, RN, Brazil, 10Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ, USA, 11Brazilian Agricultural Research Corporation — Embrapa Tropical Semi-arid, Petrolina, PE, Brazil, 12Federal University of Mato Grosso, Cuiabá, MT, Brazil, 13University of Bristol, Bristol, UK, 14Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA, 15Department of Nuclear Energy, Federal University of Pernambuco, Recife, PE, Brazil, 16Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany, 17Department of Environmental Science and Renewable Natural Resources, University of Chile, Santiago, Chile, 18Institute of Ecology and Biodiversity, Santiago, Chile, 19Department of Geography and Environmental Science, The University of Reading, Reading, UK, 20Federal University of the Agreste of Pernambuco, Garanhuns, PE, Brazil, 21Federal Rural University of Pernambuco, Serra Talhada, PE, Brazil, 22Department of Atmospheric and Ocean Sciences, FCEN — UBA, Buenos Aires, Argentina, 23National Council for Scientific and Technical Research, CONICET, Buenos Aires, Argentina, 24Instituto de Clima y Agua. Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina, 25Department of Hydraulics and Sanitary Engineering, University of São Paulo, São Carlos, SP, BrazilKey Points:•Four remote sensing evapotranspiration (ET) models were evaluated using 25 flux towers from across South America•Performance of all models is reduced in dry environments•Comparisons with flux tower-based ET showed that Global Land Evaporation Amsterdam Model and Priestley–Taylor Jet Propulsion Laboratory produced higher correlations whereas RMSE was similar for all modelsSupporting Information:Supporting Information may be found in the online version of this article.Correspondence to:D. C. D. Melo,melo.dcd@gmail.comCitation:Melo, D. C. D., Anache, J. A. A., Borges, V. P., Miralles, D. G., Martens, B., Fisher, J. B., et al. (2021). Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resources Research, 57, e2020WR028752. https://doi.org/10.1029/2020WR028752Received 26 APR 2021Accepted 11 OCT 202110.1029/2020WR028752RESEARCH ARTICLE1 of 23 |
| format | info:ar-repo/semantics/artículo |
| id | INTA11670 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2022 |
| publishDateRange | 2022 |
| publishDateSort | 2022 |
| publisher | Wiley |
| publisherStr | Wiley |
| record_format | dspace |
| spelling | INTA116702022-04-19T11:10:40Z Are remote sensing evapotranspiration models reliable across South American ecoregions? Melo, D.C.D. Anache, J.A.A. Borges, V.P. Miralles, D.G. Martens, B. Fisher, J.B. Nobrega, R.C.B. Moreno, A. Cabral, O.M.R. Rodrigues, T.R. Bezerra, B. Silva, C.M.S. Meira Neto, A.A. Moura, M.S.B. Marques, T.V. Campos, S. Nogueira, J.S. Rosolem, R. Souza, R. Antonino, A.C.D. Holl, D. Galleguillos, M. Perez-Quezada, J.F. Verhoef, A. Kutzbach, L. Lima, J.R.S. Souza, E.S. Gassman, M.I. Perez, C.F. Tonti, N. Posse Beaulieu, Gabriela Rains, D. Oliveira, P.T.S. Wendland, E. Remote Sensing Evapotranspiration Yields Remote Sensors Teledetección Evapotranspiración Rendimiento Equipo de Teledetección Torres de Flujo Flux Towers Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model evaluation across South America has been done locally or using only a single algorithm at a time. Here, we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South America. We used meteorological data from 25 flux towers to force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler model (PM-VI). E ET was predicted satisfactorily by all four models, with correlations consistently higher (20.6ER) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in terms of percent bias ( 1010EPBIAS%). As for PM-VI, this outcome is expected, given that the model requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented some dependency on biome and climate, with the models producing the best results for wet to moderately wet environments. Our findings show the suitability of individual models for a number of combinations of land cover types, biomes, and climates. At the same time, no model outperformed the others for all conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic characteristics of climates and ecosystems in South America.MELO ET AL.© 2021. American Geophysical Union. All Rights Reserved.Are Remote Sensing Evapotranspiration Models Reliable Across South American Ecoregions?D. C. D. Melo1, J. A. A. Anache2, V. P. Borges1, D. G. Miralles3, B. Martens3, J. B. Fisher4, R. L. B. Nóbrega5, A. Moreno6, O. M. R. Cabral7, T. R. Rodrigues2, B. Bezerra8,9, C. M. S. Silva8,9, A. A. Meira Neto10, M. S. B. Moura11, T. V. Marques9, S. Campos9, J. S. Nogueira12, R. Rosolem13, R. M. S. Souza14, A. C. D. Antonino15, D. Holl16, M. Galleguillos17, J. F. Perez-Quezada17,18, A. Verhoef19, L. Kutzbach16, J. R. S. Lima20, E. S. Souza21, M. I. Gassman22,23, C. F. Perez22,23, N. Tonti22, G. Posse24, D. Rains3, P. T. S. Oliveira2, and E. Wendland251Federal University of Paraíba, Areia, PB, Brazil, 2Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil, 3Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium, 4Schmid College of Science and Technology, Chapman University, Orange, CA, USA, 5Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK, 6Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, USA, 7Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil, 8Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil, 9Climate Sciences Graduate Program, Federal University of Rio Grande do Norte, Natal, RN, Brazil, 10Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ, USA, 11Brazilian Agricultural Research Corporation — Embrapa Tropical Semi-arid, Petrolina, PE, Brazil, 12Federal University of Mato Grosso, Cuiabá, MT, Brazil, 13University of Bristol, Bristol, UK, 14Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA, 15Department of Nuclear Energy, Federal University of Pernambuco, Recife, PE, Brazil, 16Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany, 17Department of Environmental Science and Renewable Natural Resources, University of Chile, Santiago, Chile, 18Institute of Ecology and Biodiversity, Santiago, Chile, 19Department of Geography and Environmental Science, The University of Reading, Reading, UK, 20Federal University of the Agreste of Pernambuco, Garanhuns, PE, Brazil, 21Federal Rural University of Pernambuco, Serra Talhada, PE, Brazil, 22Department of Atmospheric and Ocean Sciences, FCEN — UBA, Buenos Aires, Argentina, 23National Council for Scientific and Technical Research, CONICET, Buenos Aires, Argentina, 24Instituto de Clima y Agua. Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina, 25Department of Hydraulics and Sanitary Engineering, University of São Paulo, São Carlos, SP, BrazilKey Points:•Four remote sensing evapotranspiration (ET) models were evaluated using 25 flux towers from across South America•Performance of all models is reduced in dry environments•Comparisons with flux tower-based ET showed that Global Land Evaporation Amsterdam Model and Priestley–Taylor Jet Propulsion Laboratory produced higher correlations whereas RMSE was similar for all modelsSupporting Information:Supporting Information may be found in the online version of this article.Correspondence to:D. C. D. Melo,melo.dcd@gmail.comCitation:Melo, D. C. D., Anache, J. A. A., Borges, V. P., Miralles, D. G., Martens, B., Fisher, J. B., et al. (2021). Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resources Research, 57, e2020WR028752. https://doi.org/10.1029/2020WR028752Received 26 APR 2021Accepted 11 OCT 202110.1029/2020WR028752RESEARCH ARTICLE1 of 23 Fil: Melo, D.C.D. Federal University of Paracaıba; Brasil Fil: Anache, J.A.A. Federal University of Mato Grosso do Sul; Brasil Fil: Borges, B.P. Federal University of Paracaıba; Brasil Fil: Miralles, D.G. Ghent University. Hydro-Climate Extremes Lab (H-CEL); Bélgica Fil: Martens, B. Ghent University. Hydro-Climate Extremes Lab (H-CEL); Bélgica Fil: Fisher, J.B. Chapman University. Schmid College of Science and Technology; Estados Unidos Fil: Nóbrega, R.L.B. Imperial College London. Department of Life Sciences; Reino Unido Fil: Moreno, A. University of Montana. Numerical Terradynamic Simulation Group; Estados Unidos Fil: Cabral, O.M.R. Embrapa Meio Ambiente. Brazilian Agricultural Research Corporation; Brasil Fil: Rodrigues, T.R. Federal University of Mato Grosso do Sul; Brasil Fil: Bezerra, B. Federal University of Rio Grande do Norte. Department of Atmospheric and Climate Sciences; Brasil. Federal University of Rio Grande do Norte. Climate Sciences Graduate Program; Brasil Fil: Silva. C.M.S. Federal University of Rio Grande do Norte. Climate Sciences Graduate Program; Brasil. University of Arizona. Department of Hydrology and Atmospheric Sciences; Estados Unidos Fil: Meira Neto, A.A. University of Arizona. Department of Hydrology and Atmospheric Sciences; Estados Unidos Fil: Moura, M.S.B. Embrapa Tropical Semi-arid. Brazilian Agricultural Research Corporation; Brasil Fil: Marques, T.V. Federal University of Rio Grande do Norte. Climate Sciences Graduate Program; Brasil. Fil: Campos, S. Federal University of Rio Grande do Norte. Climate Sciences Graduate Program; Brasil. Fil: Nogueira, J.S. Federal University of Mato Grosso do Sul; Brasil Fil: Rosolem, R. University of Bristol; Reino Unido Fil: Souza, R. Texas A&M University. Department of Biological and Agricultural Engineering. College Station; Estados Unidos Fil: Antonino, A.C.D. Federal University of Pernambuco. Department of Nuclear Energy; Brasil Fil: Holl, D. Universitat Hamburg. Center for Earth System Research and Sustainability (CEN); Alemania Fil: Galleguillos, M. University of Chile. Department of Environmental Science and Renewable Natural Resources; Chile Fil: Perez-Quezada, J.F. University of Chile. Department of Environmental Science and Renewable Natural Resources; Chile. Institute of Ecology and Biodiversity; Chile Fil: Verhoef, A. University of Reading. Department of Geography and Environmental Science; Reino Unido Fil: Kutzbach, L. Universitat Hamburg. Center for Earth System Research and Sustainability (CEN); Alemania Fil: Lima, J.R.S. Federal University of the Agreste of Pernambuco; Brasil Fil: Souza, E.S. Federal Rural University of Pernambuco; Brasil Fil: Gassman, M.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Department of Atmospheric and Ocean Sciences; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez, C.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Department of Atmospheric and Ocean Sciences; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tonti, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Department of Atmospheric and Ocean Sciences; Argentina. Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Rains, D. Ghent University. Hydro-Climate Extremes Lab (H-CEL); Bélgica Fil: Oliveira, P.T.S. Federal University of Mato Grosso do Sul; Brasil Fil: Wendland, E. University of Sao Paulo. Department of Hydraulics and Sanitary Engineering; Brasil 2022-04-19T10:46:01Z 2022-04-19T10:46:01Z 2021-11-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/11670 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028752 0043-1397 https://doi.org/10.1029/2020WR028752 eng info:eu-repograntAgreement/INTA/PNNAT-1128023/AR./Emisiones de gases con efecto invernadero. info:eu-repo/semantics/restrictedAccess application/pdf Wiley Water Resources Research 57 (11) : e2020WR028752. (November 2021) |
| spellingShingle | Remote Sensing Evapotranspiration Yields Remote Sensors Teledetección Evapotranspiración Rendimiento Equipo de Teledetección Torres de Flujo Flux Towers Melo, D.C.D. Anache, J.A.A. Borges, V.P. Miralles, D.G. Martens, B. Fisher, J.B. Nobrega, R.C.B. Moreno, A. Cabral, O.M.R. Rodrigues, T.R. Bezerra, B. Silva, C.M.S. Meira Neto, A.A. Moura, M.S.B. Marques, T.V. Campos, S. Nogueira, J.S. Rosolem, R. Souza, R. Antonino, A.C.D. Holl, D. Galleguillos, M. Perez-Quezada, J.F. Verhoef, A. Kutzbach, L. Lima, J.R.S. Souza, E.S. Gassman, M.I. Perez, C.F. Tonti, N. Posse Beaulieu, Gabriela Rains, D. Oliveira, P.T.S. Wendland, E. Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title | Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title_full | Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title_fullStr | Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title_full_unstemmed | Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title_short | Are remote sensing evapotranspiration models reliable across South American ecoregions? |
| title_sort | are remote sensing evapotranspiration models reliable across south american ecoregions |
| topic | Remote Sensing Evapotranspiration Yields Remote Sensors Teledetección Evapotranspiración Rendimiento Equipo de Teledetección Torres de Flujo Flux Towers |
| url | http://hdl.handle.net/20.500.12123/11670 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028752 https://doi.org/10.1029/2020WR028752 |
| work_keys_str_mv | AT melodcd areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT anachejaa areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT borgesvp areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT mirallesdg areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT martensb areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT fisherjb areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT nobregarcb areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT morenoa areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT cabralomr areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT rodriguestr areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT bezerrab areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT silvacms areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT meiranetoaa areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT mouramsb areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT marquestv areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT camposs areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT nogueirajs areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT rosolemr areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT souzar areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT antoninoacd areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT holld areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT galleguillosm areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT perezquezadajf areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT verhoefa areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT kutzbachl areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT limajrs areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT souzaes areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT gassmanmi areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT perezcf areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT tontin areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT possebeaulieugabriela areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT rainsd areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT oliveirapts areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions AT wendlande areremotesensingevapotranspirationmodelsreliableacrosssouthamericanecoregions |