Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus

Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. N...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalvie, Neil C., Brady, Joseph R., Crowell, Laura E., Tracey, Mary Kate, Biedermann, Andrew M., Kaur, Kawaljit, Hickey, John M., Kristensen II, D. Lee, Bonnyman, Alexandra D., Rodriguez-Aponte, Sergio A., Whittaker, Charles A., Bok, Marina, Vega, Celina Guadalupe, Mukhopadhyay, Tarit K., Joshi, Sangeeta B., Volkin, David B., Parreño, Gladys, Love, Kerry R., Love, J. Christopher
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: BMC 2021
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/10760
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6
https://doi.org/10.1186/s12934-021-01583-6
_version_ 1855036448367968256
author Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
author_browse Biedermann, Andrew M.
Bok, Marina
Bonnyman, Alexandra D.
Brady, Joseph R.
Crowell, Laura E.
Dalvie, Neil C.
Hickey, John M.
Joshi, Sangeeta B.
Kaur, Kawaljit
Kristensen II, D. Lee
Love, J. Christopher
Love, Kerry R.
Mukhopadhyay, Tarit K.
Parreño, Gladys
Rodriguez-Aponte, Sergio A.
Tracey, Mary Kate
Vega, Celina Guadalupe
Volkin, David B.
Whittaker, Charles A.
author_facet Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
author_sort Dalvie, Neil C.
collection INTA Digital
description Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
format info:ar-repo/semantics/artículo
id INTA10760
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher BMC
publisherStr BMC
record_format dspace
spelling INTA107602021-11-12T13:58:34Z Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus Dalvie, Neil C. Brady, Joseph R. Crowell, Laura E. Tracey, Mary Kate Biedermann, Andrew M. Kaur, Kawaljit Hickey, John M. Kristensen II, D. Lee Bonnyman, Alexandra D. Rodriguez-Aponte, Sergio A. Whittaker, Charles A. Bok, Marina Vega, Celina Guadalupe Mukhopadhyay, Tarit K. Joshi, Sangeeta B. Volkin, David B. Parreño, Gladys Love, Kerry R. Love, J. Christopher Vacuna Antígenos Genética Molecular Pichia pastoris Vaccines Rotavirus Antigens Molecular Genetics Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits. Instituto de Virología Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Brady, Joseph R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Brady, Joseph R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Kaur, Kawaljit. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos Fil: Hickey, John M. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos Fil: Kristensen II, D. Lee. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos Fil: Whittaker, Charles A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Bok, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Vega, Celina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mukhopadhyay, Tarit K. University College London. Department of Biochemical Engineering; Reino Unidos Fil: Joshi, Sangeeta B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos Fil: Volkin, David B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina Fil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Love, Kerry R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos 2021-11-12T13:55:22Z 2021-11-12T13:55:22Z 2021-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/10760 https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6 1475-2859 https://doi.org/10.1186/s12934-021-01583-6 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf BMC Microbial Cell Factories 20 : Article number: 94 (2021)
spellingShingle Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_fullStr Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full_unstemmed Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_short Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_sort molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
topic Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
url http://hdl.handle.net/20.500.12123/10760
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6
https://doi.org/10.1186/s12934-021-01583-6
work_keys_str_mv AT dalvieneilc molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT bradyjosephr molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT crowelllaurae molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT traceymarykate molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT biedermannandrewm molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT kaurkawaljit molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT hickeyjohnm molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT kristenseniidlee molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT bonnymanalexandrad molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT rodriguezapontesergioa molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT whittakercharlesa molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT bokmarina molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT vegacelinaguadalupe molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT mukhopadhyaytaritk molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT joshisangeetab molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT volkindavidb molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT parrenogladys molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT lovekerryr molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus
AT lovejchristopher molecularengineeringimprovesantigenqualityandenablesintegratedmanufacturingofatrivalentsubunitvaccinecandidateforrotavirus