Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices

Eucalyptus L’Hér. (Myrtaceae) is the most valuable and globally planted forest tree genus. Fast growth, adaptability to a broad diversity of tropical and subtropical regions, combined with versatile wood properties for energy, solid products, pulp, and paper have warranted their outstanding position...

Descripción completa

Detalles Bibliográficos
Autores principales: Jurcic, Esteban Javier, Villalba, Pamela Victoria, Pathauer, Pablo Santiago, Palazzini, Dino, Oberschelp, Gustavo Pedro Javier, Harrand, Leonel, Garcia, Martin Nahuel, Aguirre, Natalia Cristina, Acuña, Cintia Vanesa, Martinez, Maria Carolina, Rivas, Juan Gabriel, Cisneros, Esteban F., Lopez, Juan Adolfo, Marcucci Poltri, Susana Noemi, Munilla, Sebastian, Cappa, Eduardo Pablo
Formato: Artículo
Lenguaje:Inglés
Publicado: Nature 2021
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/10732
https://www.nature.com/articles/s41437-021-00450-9
https://doi.org/10.1038/s41437-021-00450-9
_version_ 1855484644484448256
author Jurcic, Esteban Javier
Villalba, Pamela Victoria
Pathauer, Pablo Santiago
Palazzini, Dino
Oberschelp, Gustavo Pedro Javier
Harrand, Leonel
Garcia, Martin Nahuel
Aguirre, Natalia Cristina
Acuña, Cintia Vanesa
Martinez, Maria Carolina
Rivas, Juan Gabriel
Cisneros, Esteban F.
Lopez, Juan Adolfo
Marcucci Poltri, Susana Noemi
Munilla, Sebastian
Cappa, Eduardo Pablo
author_browse Acuña, Cintia Vanesa
Aguirre, Natalia Cristina
Cappa, Eduardo Pablo
Cisneros, Esteban F.
Garcia, Martin Nahuel
Harrand, Leonel
Jurcic, Esteban Javier
Lopez, Juan Adolfo
Marcucci Poltri, Susana Noemi
Martinez, Maria Carolina
Munilla, Sebastian
Oberschelp, Gustavo Pedro Javier
Palazzini, Dino
Pathauer, Pablo Santiago
Rivas, Juan Gabriel
Villalba, Pamela Victoria
author_facet Jurcic, Esteban Javier
Villalba, Pamela Victoria
Pathauer, Pablo Santiago
Palazzini, Dino
Oberschelp, Gustavo Pedro Javier
Harrand, Leonel
Garcia, Martin Nahuel
Aguirre, Natalia Cristina
Acuña, Cintia Vanesa
Martinez, Maria Carolina
Rivas, Juan Gabriel
Cisneros, Esteban F.
Lopez, Juan Adolfo
Marcucci Poltri, Susana Noemi
Munilla, Sebastian
Cappa, Eduardo Pablo
author_sort Jurcic, Esteban Javier
collection INTA Digital
description Eucalyptus L’Hér. (Myrtaceae) is the most valuable and globally planted forest tree genus. Fast growth, adaptability to a broad diversity of tropical and subtropical regions, combined with versatile wood properties for energy, solid products, pulp, and paper have warranted their outstanding position in current world forestry (de Lima et al. 2019). Eucalyptus dunnii Maiden (hereafter E. dunnii) has become increasingly used in commercial afforestation due to its combined good performance for growth, stem straightness, and frost tolerance, together with suitable wood density and pulp yield. In a broad sense, genomic selection (GS) is a family of statistical methods developed for predicting the breeding values of nonphenotyped individuals with the assistance of a large number of molecular markers widespread distributed throughout the genome (Meuwissen et al. 2001). These methods exploit cosegregation between markers and quantitative trait loci (QTL) in linkage disequilibrium (LD). In forest trees, GS is of particular benefit due to the extended breeding cycles caused by delayed reproductive maturity and the need for early selection of traits that express late in life (Mphahlele et al. 2020). In this context, GS has a potentially substantial impact on the rate of genetic gain by increasing the intensity and accuracy of selection and, particularly, by shortening the generational interval (Grattapaglia et al. 2018). The genomic best linear unbiased prediction (GBLUP) is one of the most commonly GS methods. It is basically a variant of the standard BLUP method (hereafter ABLUP, cf. Henderson 1984), where the pedigree-based numerator relationship matrix (Amatrix) is replaced by a genomic relationship matrix (G-matrix, e.g., Habier et al. 2013). Many empirical studies with forest tree species have shown that GBLUP is a very promising approach for tree breeding (e.g., Mphahlele et al. 2020; Resende et al. 2017; Lenz et al. 2019). However, to our knowledge, only two of them have directly investigated the efficiency of genomic prediction using only genotyped trees in E. dunnii through GBLUP (Naidoo et al. 2018; Jones et al. 2019).
format Artículo
id INTA10732
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher Nature
publisherStr Nature
record_format dspace
spelling INTA107322021-11-10T12:02:09Z Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices Jurcic, Esteban Javier Villalba, Pamela Victoria Pathauer, Pablo Santiago Palazzini, Dino Oberschelp, Gustavo Pedro Javier Harrand, Leonel Garcia, Martin Nahuel Aguirre, Natalia Cristina Acuña, Cintia Vanesa Martinez, Maria Carolina Rivas, Juan Gabriel Cisneros, Esteban F. Lopez, Juan Adolfo Marcucci Poltri, Susana Noemi Munilla, Sebastian Cappa, Eduardo Pablo Eucalyptus Genética Genetics Eucalyptus dunnii genomic prediction predicción genómica ssGBLUP Eucalyptus L’Hér. (Myrtaceae) is the most valuable and globally planted forest tree genus. Fast growth, adaptability to a broad diversity of tropical and subtropical regions, combined with versatile wood properties for energy, solid products, pulp, and paper have warranted their outstanding position in current world forestry (de Lima et al. 2019). Eucalyptus dunnii Maiden (hereafter E. dunnii) has become increasingly used in commercial afforestation due to its combined good performance for growth, stem straightness, and frost tolerance, together with suitable wood density and pulp yield. In a broad sense, genomic selection (GS) is a family of statistical methods developed for predicting the breeding values of nonphenotyped individuals with the assistance of a large number of molecular markers widespread distributed throughout the genome (Meuwissen et al. 2001). These methods exploit cosegregation between markers and quantitative trait loci (QTL) in linkage disequilibrium (LD). In forest trees, GS is of particular benefit due to the extended breeding cycles caused by delayed reproductive maturity and the need for early selection of traits that express late in life (Mphahlele et al. 2020). In this context, GS has a potentially substantial impact on the rate of genetic gain by increasing the intensity and accuracy of selection and, particularly, by shortening the generational interval (Grattapaglia et al. 2018). The genomic best linear unbiased prediction (GBLUP) is one of the most commonly GS methods. It is basically a variant of the standard BLUP method (hereafter ABLUP, cf. Henderson 1984), where the pedigree-based numerator relationship matrix (Amatrix) is replaced by a genomic relationship matrix (G-matrix, e.g., Habier et al. 2013). Many empirical studies with forest tree species have shown that GBLUP is a very promising approach for tree breeding (e.g., Mphahlele et al. 2020; Resende et al. 2017; Lenz et al. 2019). However, to our knowledge, only two of them have directly investigated the efficiency of genomic prediction using only genotyped trees in E. dunnii through GBLUP (Naidoo et al. 2018; Jones et al. 2019). Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pathauer, Pablo Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Palazzini, Dino A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Oberschelp, Gustavo Pedro Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concordia; Argentina Fil: Harrand, Leonel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concordia; Argentina Fil: Garcia, Martin Nahuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Aguirre, Natalia Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Acuña, Cintia Vanesa. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Maria Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rivas, Juan Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cisneros, Esteban F. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina Fil: Lopez, Juan Adolfo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bella Vista; Argentina Fil: Marcucci Poltri, Susana Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Munilla, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2021-11-10T11:31:46Z 2021-11-10T11:31:46Z 2021-06-18 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/10732 https://www.nature.com/articles/s41437-021-00450-9 1365-2540 0018-067X https://doi.org/10.1038/s41437-021-00450-9 eng info:eu-repograntAgreement/INTA/PNFOR-1104062/AR./Mejoramiento genético de especies forestales introducidas para usos de alto valor. info:eu-repograntAgreement/INTA/PNFOR-1104064/AR./Aplicación de herramientas moleculares para el uso y la conservación de la diversidad genética forestal. info:eu-repo/semantics/restrictedAccess application/pdf Nature Heredity 127 (2) : 176-189 (2021)
spellingShingle Eucalyptus
Genética
Genetics
Eucalyptus dunnii
genomic prediction
predicción genómica
ssGBLUP
Jurcic, Esteban Javier
Villalba, Pamela Victoria
Pathauer, Pablo Santiago
Palazzini, Dino
Oberschelp, Gustavo Pedro Javier
Harrand, Leonel
Garcia, Martin Nahuel
Aguirre, Natalia Cristina
Acuña, Cintia Vanesa
Martinez, Maria Carolina
Rivas, Juan Gabriel
Cisneros, Esteban F.
Lopez, Juan Adolfo
Marcucci Poltri, Susana Noemi
Munilla, Sebastian
Cappa, Eduardo Pablo
Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title_full Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title_fullStr Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title_full_unstemmed Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title_short Single - step genomic prediction of Eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
title_sort single step genomic prediction of eucalyptus dunnii using different identity by descent and identity by state relation ship matrices
topic Eucalyptus
Genética
Genetics
Eucalyptus dunnii
genomic prediction
predicción genómica
ssGBLUP
url http://hdl.handle.net/20.500.12123/10732
https://www.nature.com/articles/s41437-021-00450-9
https://doi.org/10.1038/s41437-021-00450-9
work_keys_str_mv AT jurcicestebanjavier singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT villalbapamelavictoria singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT pathauerpablosantiago singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT palazzinidino singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT oberschelpgustavopedrojavier singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT harrandleonel singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT garciamartinnahuel singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT aguirrenataliacristina singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT acunacintiavanesa singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT martinezmariacarolina singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT rivasjuangabriel singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT cisnerosestebanf singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT lopezjuanadolfo singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT marcuccipoltrisusananoemi singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT munillasebastian singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices
AT cappaeduardopablo singlestepgenomicpredictionofeucalyptusdunniiusingdifferentidentitybydescentandidentitybystaterelationshipmatrices