Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield

Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be val...

Descripción completa

Detalles Bibliográficos
Autores principales: Goigochea Pinchi, Diego, Vega Herrera, Sergio Sebastian, Torres Chavez, Edson Esmith, Archentti Reategui, Fernando, Barrera Torres, Ciceron, Dominguez Yap, Percy Luis, Ysuiza Perez, Alfredo, Perez Tello, Monica, Rios Rios, Raúl, Santillan Gonzáles, Manuel Dante, Ganoza Roncal, Jorge Juan, Ruiz Reyes, Jose Guillermo, Agurto Piñarreta, Alex Ivan
Formato: info:eu-repo/semantics/article
Lenguaje:Inglés
Publicado: PE 2025
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12955/2896
http://doi.org/10.17268/agroind.sci.2025.03.05
_version_ 1855028755166134272
author Goigochea Pinchi, Diego
Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
author_browse Agurto Piñarreta, Alex Ivan
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ganoza Roncal, Jorge Juan
Goigochea Pinchi, Diego
Perez Tello, Monica
Rios Rios, Raúl
Ruiz Reyes, Jose Guillermo
Santillan Gonzáles, Manuel Dante
Torres Chavez, Edson Esmith
Vega Herrera, Sergio Sebastian
Ysuiza Perez, Alfredo
author_facet Goigochea Pinchi, Diego
Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
author_sort Goigochea Pinchi, Diego
collection Repositorio INIA
description Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.
format info:eu-repo/semantics/article
id INIA2896
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher PE
publisherStr PE
record_format dspace
spelling INIA28962025-10-29T14:08:34Z Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield Fenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimiento Goigochea Pinchi, Diego Vega Herrera, Sergio Sebastian Torres Chavez, Edson Esmith Archentti Reategui, Fernando Barrera Torres, Ciceron Dominguez Yap, Percy Luis Ysuiza Perez, Alfredo Perez Tello, Monica Rios Rios, Raúl Santillan Gonzáles, Manuel Dante Ganoza Roncal, Jorge Juan Ruiz Reyes, Jose Guillermo Agurto Piñarreta, Alex Ivan Oryza sativa Teledetección Imágenes multispectrales Aprendizaje automático Mejora genética Remote sensing Multispectral imaging Machine learning Genetic improvement. https://purl.org/pe-repo/ocde/ford#4.01.01 Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture Rice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria. 2025-10-13T20:17:11Z 2025-10-13T20:17:11Z 2025-09-26 info:eu-repo/semantics/article 2226-2989 http://hdl.handle.net/20.500.12955/2896 http://doi.org/10.17268/agroind.sci.2025.03.05 eng urn:issn:2226-2989 Universidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrial info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/nc/4.0/ application/pdf application/pdf PE Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
https://purl.org/pe-repo/ocde/ford#4.01.01
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
Goigochea Pinchi, Diego
Vega Herrera, Sergio Sebastian
Torres Chavez, Edson Esmith
Archentti Reategui, Fernando
Barrera Torres, Ciceron
Dominguez Yap, Percy Luis
Ysuiza Perez, Alfredo
Perez Tello, Monica
Rios Rios, Raúl
Santillan Gonzáles, Manuel Dante
Ganoza Roncal, Jorge Juan
Ruiz Reyes, Jose Guillermo
Agurto Piñarreta, Alex Ivan
Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_full Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_fullStr Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_full_unstemmed Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_short Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
title_sort rice phenotyping using unmanned aerial vehicles analyzing morphological characteristics and yield
topic Oryza sativa
Teledetección
Imágenes multispectrales
Aprendizaje automático
Mejora genética
Remote sensing
Multispectral imaging
Machine learning
Genetic improvement.
https://purl.org/pe-repo/ocde/ford#4.01.01
Arroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
url http://hdl.handle.net/20.500.12955/2896
http://doi.org/10.17268/agroind.sci.2025.03.05
work_keys_str_mv AT goigocheapinchidiego ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT vegaherrerasergiosebastian ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT torreschavezedsonesmith ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT archenttireateguifernando ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT barreratorresciceron ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT dominguezyappercyluis ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT ysuizaperezalfredo ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT pereztellomonica ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT riosriosraul ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT santillangonzalesmanueldante ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT ganozaroncaljorgejuan ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT ruizreyesjoseguillermo ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT agurtopinarretaalexivan ricephenotypingusingunmannedaerialvehiclesanalyzingmorphologicalcharacteristicsandyield
AT goigocheapinchidiego fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT vegaherrerasergiosebastian fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT torreschavezedsonesmith fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT archenttireateguifernando fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT barreratorresciceron fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT dominguezyappercyluis fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT ysuizaperezalfredo fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT pereztellomonica fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT riosriosraul fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT santillangonzalesmanueldante fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT ganozaroncaljorgejuan fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT ruizreyesjoseguillermo fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento
AT agurtopinarretaalexivan fenotipadodelarrozmediantevehiculosaereosnotripuladosanalisisdecaracteristicasmorfologicasyrendimiento