Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight r...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | info:eu-repo/semantics/article |
| Language: | Inglés |
| Published: |
Elsevier
2025
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 |
| _version_ | 1855028753629970432 |
|---|---|
| author | Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio |
| author_browse | Calsin Cari, Maribel Canaza Cayo, Ali William Cardenas Minaya, Oscar Efrain Churata Huacani, Roxana Huacani Pacori, Ferdeynand Marcos Mamani Cato, Rubén Herberth Rodríguez Huanca, Francisco Halley de Sousa Bueno Filho, Júlio Sílvio |
| author_facet | Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio |
| author_sort | Canaza Cayo, Ali William |
| collection | Repositorio INIA |
| description | The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects. |
| format | info:eu-repo/semantics/article |
| id | INIA2716 |
| institution | Institucional Nacional de Innovación Agraria |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | INIA27162025-04-10T21:17:51Z Modeling growth curve parameters in Peruvian llamas using a Bayesian approach Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects. The authors thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - process number 5.02/2022), the Federal University of Lavras, Brazil, for their funding support. We also thank the 067_PI project of the National Agricultural Innovation Program (PNIA) of INIA for the financial support and data, Dr. Teodosio Huanca, and the technical staff of the Quimsachata Experimental Center, INIA, Puno, Peru, for their assistance in carrying out this research. 2025-04-10T21:17:50Z 2025-04-10T21:17:50Z 2025-03-20 info:eu-repo/semantics/article Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7 2451-943X http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 eng urn:issn:2451-943X Veterinary and Animal Science info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Elsevier NL Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA |
| spellingShingle | Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title | Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_full | Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_fullStr | Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_full_unstemmed | Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_short | Modeling growth curve parameters in Peruvian llamas using a Bayesian approach |
| title_sort | modeling growth curve parameters in peruvian llamas using a bayesian approach |
| topic | Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana |
| url | http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 |
| work_keys_str_mv | AT canazacayoaliwilliam modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT mamanicatorubenherberth modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT churatahuacaniroxana modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT rodriguezhuancafranciscohalley modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT calsincarimaribel modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT huacanipacoriferdeynandmarcos modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT cardenasminayaoscarefrain modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach AT desousabuenofilhojuliosilvio modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach |