Modeling growth curve parameters in Peruvian llamas using a Bayesian approach

The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight r...

Full description

Bibliographic Details
Main Authors: Canaza Cayo, Ali William, Mamani Cato, Rubén Herberth, Churata Huacani, Roxana, Rodríguez Huanca, Francisco Halley, Calsin Cari, Maribel, Huacani Pacori, Ferdeynand Marcos, Cardenas Minaya, Oscar Efrain, de Sousa Bueno Filho, Júlio Sílvio
Format: info:eu-repo/semantics/article
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12955/2716
https://doi.org/10.1016/j.vas.2025.100447
_version_ 1855028753629970432
author Canaza Cayo, Ali William
Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
author_browse Calsin Cari, Maribel
Canaza Cayo, Ali William
Cardenas Minaya, Oscar Efrain
Churata Huacani, Roxana
Huacani Pacori, Ferdeynand Marcos
Mamani Cato, Rubén Herberth
Rodríguez Huanca, Francisco Halley
de Sousa Bueno Filho, Júlio Sílvio
author_facet Canaza Cayo, Ali William
Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
author_sort Canaza Cayo, Ali William
collection Repositorio INIA
description The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects.
format info:eu-repo/semantics/article
id INIA2716
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INIA27162025-04-10T21:17:51Z Modeling growth curve parameters in Peruvian llamas using a Bayesian approach Canaza Cayo, Ali William Mamani Cato, Rubén Herberth Churata Huacani, Roxana Rodríguez Huanca, Francisco Halley Calsin Cari, Maribel Huacani Pacori, Ferdeynand Marcos Cardenas Minaya, Oscar Efrain de Sousa Bueno Filho, Júlio Sílvio Nonlinear models Llamas Body weight Growth modeling Bayesian framework https://purl.org/pe-repo/ocde/ford#4.02.01 Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types (K'ara and Ch'accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings algorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas reached higher asymptotic weights than males, and K'ara-type llamas exhibited higher asymptotic weights compared to Ch'accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limitations include the use of historical data, which may not fully represent current growth patterns, and the reliance on non-informative priors, which could be improved with prior knowledge. Future studies should refine these aspects. The authors thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - process number 5.02/2022), the Federal University of Lavras, Brazil, for their funding support. We also thank the 067_PI project of the National Agricultural Innovation Program (PNIA) of INIA for the financial support and data, Dr. Teodosio Huanca, and the technical staff of the Quimsachata Experimental Center, INIA, Puno, Peru, for their assistance in carrying out this research. 2025-04-10T21:17:50Z 2025-04-10T21:17:50Z 2025-03-20 info:eu-repo/semantics/article Canaza-Cayo, A. W.; Mamani-Cato, R. H.; Churata-Huacani, R.; Huanca, F. H. R.; Calsin-Cari, M.; Huacani-Pacori, F. M.; ... & de Sousa Bueno Filho, J. S. (2025). Modeling growth curve parameters in Peruvian llamas using a Bayesian approach. Veterinary and Animal Science, 28, 100447. doi: 10.1007/s11250-024-07149-7 2451-943X http://hdl.handle.net/20.500.12955/2716 https://doi.org/10.1016/j.vas.2025.100447 eng urn:issn:2451-943X Veterinary and Animal Science info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Elsevier NL Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
https://purl.org/pe-repo/ocde/ford#4.02.01
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
Canaza Cayo, Ali William
Mamani Cato, Rubén Herberth
Churata Huacani, Roxana
Rodríguez Huanca, Francisco Halley
Calsin Cari, Maribel
Huacani Pacori, Ferdeynand Marcos
Cardenas Minaya, Oscar Efrain
de Sousa Bueno Filho, Júlio Sílvio
Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_full Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_fullStr Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_full_unstemmed Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_short Modeling growth curve parameters in Peruvian llamas using a Bayesian approach
title_sort modeling growth curve parameters in peruvian llamas using a bayesian approach
topic Nonlinear models
Llamas
Body weight
Growth modeling
Bayesian framework
https://purl.org/pe-repo/ocde/ford#4.02.01
Llama; Crecimiento animal; Modelos no lineales; Peso corporal; Estadística bayesiana
url http://hdl.handle.net/20.500.12955/2716
https://doi.org/10.1016/j.vas.2025.100447
work_keys_str_mv AT canazacayoaliwilliam modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT mamanicatorubenherberth modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT churatahuacaniroxana modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT rodriguezhuancafranciscohalley modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT calsincarimaribel modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT huacanipacoriferdeynandmarcos modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT cardenasminayaoscarefrain modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach
AT desousabuenofilhojuliosilvio modelinggrowthcurveparametersinperuvianllamasusingabayesianapproach