Using UAV images and phenotypic traits to predict potato morphology and yield in Peru

Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on p...

Descripción completa

Detalles Bibliográficos
Autores principales: Ccopi Trucios, Dennis, Ortega Quispe, Kevin, Castañeda Tinco, Italo, Rios Chavarria, Claudia, Enriquez Pinedo, Lucia, Patricio Rosales, Solanch, Ore Aquino, Zoila, Casanova Nuñez Melgar, David, Agurto Piñarreta, Alex Iván, Zúñiga López, Luz Noemí, Urquizo Barrera, Julio
Formato: Artículo
Lenguaje:Inglés
Publicado: MDPI 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12955/2610
https://doi.org/10.3390/agriculture14111876
_version_ 1855490398095409152
author Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
author_browse Agurto Piñarreta, Alex Iván
Casanova Nuñez Melgar, David
Castañeda Tinco, Italo
Ccopi Trucios, Dennis
Enriquez Pinedo, Lucia
Ore Aquino, Zoila
Ortega Quispe, Kevin
Patricio Rosales, Solanch
Rios Chavarria, Claudia
Urquizo Barrera, Julio
Zúñiga López, Luz Noemí
author_facet Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
author_sort Ccopi Trucios, Dennis
collection Repositorio INIA
description Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.
format Artículo
id INIA2610
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INIA26102025-05-26T01:11:49Z Using UAV images and phenotypic traits to predict potato morphology and yield in Peru Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Rios Chavarria, Claudia Enriquez Pinedo, Lucia Patricio Rosales, Solanch Ore Aquino, Zoila Casanova Nuñez Melgar, David Agurto Piñarreta, Alex Iván Zúñiga López, Luz Noemí Urquizo Barrera, Julio Precision agriculture Remote sensing Crop monitoring Machine learning https://purl.org/pe-repo/ocde/ford#4.01.06 Machine learning Precision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management. 2024-11-28T15:00:18Z 2024-11-28T15:00:18Z 2024-10-24 info:eu-repo/semantics/article Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876 2077-0472 http://hdl.handle.net/20.500.12955/2610 https://doi.org/10.3390/agriculture14111876 eng urn:issn: 2077-0472 Agriculture info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf MDPI CH Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
Machine learning
Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Rios Chavarria, Claudia
Enriquez Pinedo, Lucia
Patricio Rosales, Solanch
Ore Aquino, Zoila
Casanova Nuñez Melgar, David
Agurto Piñarreta, Alex Iván
Zúñiga López, Luz Noemí
Urquizo Barrera, Julio
Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_full Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_fullStr Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_full_unstemmed Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_short Using UAV images and phenotypic traits to predict potato morphology and yield in Peru
title_sort using uav images and phenotypic traits to predict potato morphology and yield in peru
topic Precision agriculture
Remote sensing
Crop monitoring
Machine learning
https://purl.org/pe-repo/ocde/ford#4.01.06
Machine learning
url http://hdl.handle.net/20.500.12955/2610
https://doi.org/10.3390/agriculture14111876
work_keys_str_mv AT ccopitruciosdennis usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT ortegaquispekevin usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT castanedatincoitalo usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT rioschavarriaclaudia usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT enriquezpinedolucia usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT patriciorosalessolanch usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT oreaquinozoila usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT casanovanunezmelgardavid usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT agurtopinarretaalexivan usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT zunigalopezluznoemi usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu
AT urquizobarrerajulio usinguavimagesandphenotypictraitstopredictpotatomorphologyandyieldinperu