Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with...
| Autores principales: | , , , , , , , , |
|---|---|
| Formato: | info:eu-repo/semantics/article |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/20.500.12955/2561 https://doi.org/10.3390/agriengineering6030170 |
Ejemplares similares: Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
- Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
- Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
- Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV) :a case study in a commercial vineyard
- Web-Based System for the Remote Monitoring and Management of Precision Irrigation: A Case Study in an Arid Region of Argentina
- Mapas de prescripciones con drones : metodología de trabajo
- Influencia de la variabilidad espacial de las propiedades del suelo sobre el rendimiento de alfalfa (Medicago sativa L.) bajo riego. Una aproximación utilizando herramientas de teledetección y agricultura de precisión