Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley

Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environment...

Descripción completa

Detalles Bibliográficos
Autores principales: Pizarro Carcausto, Samuel, Vera Vilchez, Jesús Emilio, Huamani, Joseph, Cruz, Juancarlos, Lastra Paucar, Sphyros Roomel, Solórzano Acosta, Richard Andi, Verástegui Martínez, Patricia
Formato: Artículo preliminar
Lenguaje:Inglés
Publicado: Elsevier 2024
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12955/2537
http://dx.doi.org/10.2139/ssrn.4777607
_version_ 1855490592140689408
author Pizarro Carcausto, Samuel
Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra Paucar, Sphyros Roomel
Solórzano Acosta, Richard Andi
Verástegui Martínez, Patricia
author_browse Cruz, Juancarlos
Huamani, Joseph
Lastra Paucar, Sphyros Roomel
Pizarro Carcausto, Samuel
Solórzano Acosta, Richard Andi
Vera Vilchez, Jesús Emilio
Verástegui Martínez, Patricia
author_facet Pizarro Carcausto, Samuel
Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra Paucar, Sphyros Roomel
Solórzano Acosta, Richard Andi
Verástegui Martínez, Patricia
author_sort Pizarro Carcausto, Samuel
collection Repositorio INIA
description Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.
format Artículo preliminar
id INIA2537
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INIA25372025-09-18T20:33:14Z Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley Pizarro Carcausto, Samuel Vera Vilchez, Jesús Emilio Huamani, Joseph Cruz, Juancarlos Lastra Paucar, Sphyros Roomel Solórzano Acosta, Richard Andi Verástegui Martínez, Patricia Random Forest Soil mapping Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.04 Algorithms Algoritmo Soil surveys Reconocimiento de suelos Spatial data Datos espaciales Machine learning Aprendizaje automático Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control. 2024-07-12T04:47:13Z 2024-07-12T04:47:13Z 2024-03-29 info:eu-repo/semantics/workingPaper Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607 1556-5068 https://hdl.handle.net/20.500.12955/2537 http://dx.doi.org/10.2139/ssrn.4777607 eng urn:issn: 1556-5068 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf Elsevier US Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.04
Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Machine learning
Aprendizaje automático
Pizarro Carcausto, Samuel
Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra Paucar, Sphyros Roomel
Solórzano Acosta, Richard Andi
Verástegui Martínez, Patricia
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_full Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_fullStr Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_full_unstemmed Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_short Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_sort digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning implemented in gee for the peruvian mantaro valley
topic Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.04
Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Machine learning
Aprendizaje automático
url https://hdl.handle.net/20.500.12955/2537
http://dx.doi.org/10.2139/ssrn.4777607
work_keys_str_mv AT pizarrocarcaustosamuel digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT veravilchezjesusemilio digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT huamanijoseph digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT cruzjuancarlos digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT lastrapaucarsphyrosroomel digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT solorzanoacostarichardandi digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley
AT verasteguimartinezpatricia digitalsoilmappingofmetalsandmetalloidsincroplandsusingmultiplegeospatialdataandmachinelearningimplementedingeefortheperuvianmantarovalley