An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)

One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In additi...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina Medina, Angel James, Salas López, Rolando, Zabaleta Santisteban, Jhon Antony, Tuesta Trauco, Katerin Meliza, Turpo Cayo, Efrain Yury, Huaman Haro, Nixon, Oliva Cruz, Manuel, Gómez Fernández, Darwin
Formato: info:eu-repo/semantics/article
Lenguaje:Inglés
Publicado: MDPI 2024
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12955/2466
https://doi.org/10.3390/agronomy14030557
_version_ 1855028441703776256
author Medina Medina, Angel James
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
author_browse Gómez Fernández, Darwin
Huaman Haro, Nixon
Medina Medina, Angel James
Oliva Cruz, Manuel
Salas López, Rolando
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Zabaleta Santisteban, Jhon Antony
author_facet Medina Medina, Angel James
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
author_sort Medina Medina, Angel James
collection Repositorio INIA
description One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.
format info:eu-repo/semantics/article
id INIA2466
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INIA24662024-04-02T17:01:37Z An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) Medina Medina, Angel James Salas López, Rolando Zabaleta Santisteban, Jhon Antony Tuesta Trauco, Katerin Meliza Turpo Cayo, Efrain Yury Huaman Haro, Nixon Oliva Cruz, Manuel Gómez Fernández, Darwin SAR Rice Monitoring Changes https://purl.org/pe-repo/ocde/ford#4.01.06 SAR (radar) Radar de abertura sintética Monitoring Vigilancia Oryza sativa Rice Arroz One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management. 2024-04-02T17:01:35Z 2024-04-02T17:01:35Z 2024-03-08 info:eu-repo/semantics/article Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557 2073-4395 https://hdl.handle.net/20.500.12955/2466 https://doi.org/10.3390/agronomy14030557 eng urn:issn:2073-4395 Agronomy info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf MDPI CH Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle SAR
Rice
Monitoring
Changes
https://purl.org/pe-repo/ocde/ford#4.01.06
SAR (radar)
Radar de abertura sintética
Monitoring
Vigilancia
Oryza sativa
Rice
Arroz
Medina Medina, Angel James
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_full An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_fullStr An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_full_unstemmed An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_short An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_sort analysis of the rice cultivation dynamics in the lower utcubamba river basin using sar and optical imagery in google earth engine gee
topic SAR
Rice
Monitoring
Changes
https://purl.org/pe-repo/ocde/ford#4.01.06
SAR (radar)
Radar de abertura sintética
Monitoring
Vigilancia
Oryza sativa
Rice
Arroz
url https://hdl.handle.net/20.500.12955/2466
https://doi.org/10.3390/agronomy14030557
work_keys_str_mv AT medinamedinaangeljames ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT salaslopezrolando ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT zabaletasantistebanjhonantony ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT tuestatraucokaterinmeliza ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT turpocayoefrainyury ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT huamanharonixon ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT olivacruzmanuel ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT gomezfernandezdarwin ananalysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT medinamedinaangeljames analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT salaslopezrolando analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT zabaletasantistebanjhonantony analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT tuestatraucokaterinmeliza analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT turpocayoefrainyury analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT huamanharonixon analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT olivacruzmanuel analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee
AT gomezfernandezdarwin analysisofthericecultivationdynamicsinthelowerutcubambariverbasinusingsarandopticalimageryingoogleearthenginegee