Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru

In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of in...

Descripción completa

Detalles Bibliográficos
Autores principales: Saravia Navarro, David, Valqui Valqui, Lamberto, Salazar Coronal, Wilian, Quille Mamani, Javier Alvaro, Barboza Castillo, Elgar, Porras Jorge, Zenaida Rossana, Injante Silva, Pedro Hugo, Arbizu Berrocal, Carlos Irvin
Formato: Artículo
Lenguaje:Inglés
Publicado: MDPI 2023
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12955/2168
https://doi.org/10.3390/drones7050325
_version_ 1855490570788536320
author Saravia Navarro, David
Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
author_browse Arbizu Berrocal, Carlos Irvin
Barboza Castillo, Elgar
Injante Silva, Pedro Hugo
Porras Jorge, Zenaida Rossana
Quille Mamani, Javier Alvaro
Salazar Coronal, Wilian
Saravia Navarro, David
Valqui Valqui, Lamberto
author_facet Saravia Navarro, David
Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
author_sort Saravia Navarro, David
collection Repositorio INIA
description In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.
format Artículo
id INIA2168
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INIA21682023-08-22T17:42:06Z Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru Saravia Navarro, David Valqui Valqui, Lamberto Salazar Coronal, Wilian Quille Mamani, Javier Alvaro Barboza Castillo, Elgar Porras Jorge, Zenaida Rossana Injante Silva, Pedro Hugo Arbizu Berrocal, Carlos Irvin Multiple regression Multispectral imaging NDVI Precision agriculture Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Multiple regression analysis Multispectral imagery Normalized difference vegetation index Análisis por regresión múltiple Imágenes multiespectrales Indice normalizado diferencial de la vegetación Precision agricultura Agricultura de precisión Teledetección In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem. 2023-06-05T16:48:47Z 2023-06-05T16:48:47Z 2023-05-19 info:eu-repo/semantics/article Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325 2504-446X https://hdl.handle.net/20.500.12955/2168 https://doi.org/10.3390/drones7050325 eng urn:issn:2504-446X Drones info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf MDPI CH Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
Saravia Navarro, David
Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_full Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_fullStr Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_full_unstemmed Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_short Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_sort yield prediction of four bean phaseolus vulgaris cultivars using vegetation indices based on multispectral images from uav in an arid zone of peru
topic Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
url https://hdl.handle.net/20.500.12955/2168
https://doi.org/10.3390/drones7050325
work_keys_str_mv AT saravianavarrodavid yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT valquivalquilamberto yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT salazarcoronalwilian yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT quillemamanijavieralvaro yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT barbozacastilloelgar yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT porrasjorgezenaidarossana yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT injantesilvapedrohugo yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu
AT arbizuberrocalcarlosirvin yieldpredictionoffourbeanphaseolusvulgariscultivarsusingvegetationindicesbasedonmultispectralimagesfromuavinanaridzoneofperu