Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's econ...

Full description

Bibliographic Details
Main Authors: Saravia Navarro, David, Salazar Coronel, Wilian, Valqui Valqui, Lamberto, Quille Mamani, Javier Alvaro, Porras Jorge, Rossana, Corredor Arizapana, Flor Anita, Barboza Castillo, Elgar, Vásquez Pérez, Héctor Vladimir, Arbizu Berrocal, Carlos Irvin
Format: info:eu-repo/semantics/article
Language:Inglés
Published: MDPI 2022
Subjects:
Online Access:https://hdl.handle.net/20.500.12955/1852
https://doi.org/10.20944/preprints202205.0231.v1
_version_ 1855028619291656192
author Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
author_browse Arbizu Berrocal, Carlos Irvin
Barboza Castillo, Elgar
Corredor Arizapana, Flor Anita
Porras Jorge, Rossana
Quille Mamani, Javier Alvaro
Salazar Coronel, Wilian
Saravia Navarro, David
Valqui Valqui, Lamberto
Vásquez Pérez, Héctor Vladimir
author_facet Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
author_sort Saravia Navarro, David
collection Repositorio INIA
description Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.
format info:eu-repo/semantics/article
id INIA1852
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INIA18522023-08-18T17:32:52Z Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru Saravia Navarro, David Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Arbizu Berrocal, Carlos Irvin Vegetation índices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.04.00 Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru. Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References. 2022-09-05T16:59:47Z 2022-09-05T16:59:47Z 2022-05-17 info:eu-repo/semantics/article Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1 https://hdl.handle.net/20.500.12955/1852 Preprints https://doi.org/10.20944/preprints202205.0231.v1 eng https://doi.org/10.20944/preprints202205.0231.v1 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf Perú MDPI Suiza Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.04.00
Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_full Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_fullStr Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_full_unstemmed Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_short Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
title_sort yield predictions of four hybrids of maize zea mays using multispectral images obtained from rpas in the coast of peru
topic Vegetation índices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.04.00
url https://hdl.handle.net/20.500.12955/1852
https://doi.org/10.20944/preprints202205.0231.v1
work_keys_str_mv AT saravianavarrodavid yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT salazarcoronelwilian yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT valquivalquilamberto yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT quillemamanijavieralvaro yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT porrasjorgerossana yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT corredorarizapanafloranita yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT barbozacastilloelgar yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT vasquezperezhectorvladimir yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu
AT arbizuberrocalcarlosirvin yieldpredictionsoffourhybridsofmaizezeamaysusingmultispectralimagesobtainedfromrpasinthecoastofperu