Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)

The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters...

Descripción completa

Detalles Bibliográficos
Autores principales: Canaza Cayo, A. W., Huanca Mamani, Teodosio, Gutiérrez, Juan Pablo, Beltrán, P. A.
Formato: info:eu-repo/semantics/article
Lenguaje:Inglés
Publicado: ELSEVIER 2022
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12955/1687
https://doi.org/10.1016/j.smallrumres.2015.01.026
_version_ 1855028784748560384
author Canaza Cayo, A. W.
Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
author_browse Beltrán, P. A.
Canaza Cayo, A. W.
Gutiérrez, Juan Pablo
Huanca Mamani, Teodosio
author_facet Canaza Cayo, A. W.
Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
author_sort Canaza Cayo, A. W.
collection Repositorio INIA
description The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters and finally estimate the genetic parameters for growth curve parameters (A: asymptotic body weight and k: specific growth rate). A total of 35,691 monthly body weight records from birth up to 16 months of age from 2675 young llamas, collected from 1998 to 2008 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru were used. Growth curve parameters were estimated by non-linear procedures while genetic parameters were estimated by application of a bivariate animal model and the restricted maximum likelihood (REML) method. All non-linear functions closely fitted actual body weight measurements, while the Gompertz function provided the best fit in describing the growth data of young llamas. All environmental effects significantly influenced the asymptotic weight (A), while the specific growth rate (k) was only affected by the month and year of birth. Heritability estimates for parameters A and k were 0.10 and 0.01, respectively. Genetic correlation between A and k was high and negative (−0.82), indicating that a rapid decrease in growth rate after inflection point is associated with higher mature weight. Despite the low heritability estimates obtained herein, slight genetic gain(s) were observed in the current study suggesting that a selection program to change the slope of the growth curve of llamas may be feasible.
format info:eu-repo/semantics/article
id INIA1687
institution Institucional Nacional de Innovación Agraria
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher ELSEVIER
publisherStr ELSEVIER
record_format dspace
spelling INIA16872023-11-07T13:16:24Z Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama) Canaza Cayo, A. W. Huanca Mamani, Teodosio Gutiérrez, Juan Pablo Beltrán, P. A. Non-linear functions Environmental effects Genetic parameters Heritabilities Genetic correlation Llamas https://purl.org/pe-repo/ocde/ford#4.02.00 The objectives of this study were to describe the growth of young llamas by the application of four non-linear functions (Gompertz, Logistic, Von Bertalanffy and Brody), evaluate the importance of fixed (environmental) effects (sex, type of llama, month and year of birth) on growth curve parameters and finally estimate the genetic parameters for growth curve parameters (A: asymptotic body weight and k: specific growth rate). A total of 35,691 monthly body weight records from birth up to 16 months of age from 2675 young llamas, collected from 1998 to 2008 in the Quimsachata Experimental Station of the Instituto Nacional de Innovación Agraria (INIA) in Peru were used. Growth curve parameters were estimated by non-linear procedures while genetic parameters were estimated by application of a bivariate animal model and the restricted maximum likelihood (REML) method. All non-linear functions closely fitted actual body weight measurements, while the Gompertz function provided the best fit in describing the growth data of young llamas. All environmental effects significantly influenced the asymptotic weight (A), while the specific growth rate (k) was only affected by the month and year of birth. Heritability estimates for parameters A and k were 0.10 and 0.01, respectively. Genetic correlation between A and k was high and negative (−0.82), indicating that a rapid decrease in growth rate after inflection point is associated with higher mature weight. Despite the low heritability estimates obtained herein, slight genetic gain(s) were observed in the current study suggesting that a selection program to change the slope of the growth curve of llamas may be feasible. Abstract. 1. Introduction. 2. Materials and methods. 3. Results and discussion. 4. Conclusion. References. 2022-05-26T19:22:23Z 2022-05-26T19:22:23Z 2015-02-11 info:eu-repo/semantics/article Canaza, A.W.; Huanca, T.; Gutiérrez, J.P & Beltrán, P.A. (2015). Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research 130 (2015) 81–89. doi: 10.1016/j.smallrumres.2015.01.026 https://hdl.handle.net/20.500.12955/1687 Small Ruminant Research https://doi.org/10.1016/j.smallrumres.2015.01.026 eng Small Ruminant Research 130 (2015) 81–89 https://doi.org/10.1016/j.smallrumres.2015.01.026 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ application/pdf application/pdf Perú ELSEVIER Israel Instituto Nacional de Innovación Agraria Repositorio Institucional - INIA
spellingShingle Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
https://purl.org/pe-repo/ocde/ford#4.02.00
Canaza Cayo, A. W.
Huanca Mamani, Teodosio
Gutiérrez, Juan Pablo
Beltrán, P. A.
Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_full Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_fullStr Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_full_unstemmed Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_short Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama)
title_sort modelling of growth curves and estimation of genetic parameters for growth curve parameters in peruvian young llamas lama glama
topic Non-linear functions
Environmental effects
Genetic parameters
Heritabilities
Genetic correlation
Llamas
https://purl.org/pe-repo/ocde/ford#4.02.00
url https://hdl.handle.net/20.500.12955/1687
https://doi.org/10.1016/j.smallrumres.2015.01.026
work_keys_str_mv AT canazacayoaw modellingofgrowthcurvesandestimationofgeneticparametersforgrowthcurveparametersinperuvianyoungllamaslamaglama
AT huancamamaniteodosio modellingofgrowthcurvesandestimationofgeneticparametersforgrowthcurveparametersinperuvianyoungllamaslamaglama
AT gutierrezjuanpablo modellingofgrowthcurvesandestimationofgeneticparametersforgrowthcurveparametersinperuvianyoungllamaslamaglama
AT beltranpa modellingofgrowthcurvesandestimationofgeneticparametersforgrowthcurveparametersinperuvianyoungllamaslamaglama