Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]

Long term use of Maresha plow, a conventional plow pulled by oxen, has resulted in the formation of a restrictive layer thereby limiting water movement and aeration as well as root zone penetration in the soil profile. Several studies have shown that improved tillage practices can positively affect...

Full description

Bibliographic Details
Main Authors: Muche, H., Abdela, M., Schmitter, Petra S., Nakawuka, Prossie, Tilahun, Seifu A., Steenhuis, Tammo S., Langan, Simon J.
Format: Conference Paper
Language:Inglés
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10568/99048
_version_ 1855513223045840896
author Muche, H.
Abdela, M.
Schmitter, Petra S.
Nakawuka, Prossie
Tilahun, Seifu A.
Steenhuis, Tammo S.
Langan, Simon J.
author_browse Abdela, M.
Langan, Simon J.
Muche, H.
Nakawuka, Prossie
Schmitter, Petra S.
Steenhuis, Tammo S.
Tilahun, Seifu A.
author_facet Muche, H.
Abdela, M.
Schmitter, Petra S.
Nakawuka, Prossie
Tilahun, Seifu A.
Steenhuis, Tammo S.
Langan, Simon J.
author_sort Muche, H.
collection Repository of Agricultural Research Outputs (CGSpace)
description Long term use of Maresha plow, a conventional plow pulled by oxen, has resulted in the formation of a restrictive layer thereby limiting water movement and aeration as well as root zone penetration in the soil profile. Several studies have shown that improved tillage practices can positively affect infiltration and aeration resulting in increased rainwater use efficiency and agricultural production. However, rather limited information is available about the use of the Berken plough as a potential alternative for tillage practices. We studied the impact of improved tillage practices on infiltration, erosion, runoff and crop productivity during the rainy period of 2016 in Robit-Bata watershed located in upper Blue Nile, Ethiopia. The experiments were carried out in Maize fields where four tillage treatments were compared: (i) no-till (NT), no ploughing; (ii) conventional (CT), plots tilled three times using oxen driven Maresha, (iii) deep (DT), manual digging up to 60 cm using a mattock and (iv) Berken tillage (BT), plots tilled three times using an oxen driven Berken plough. Soil physical parameters (e.g. penetration resistance, bulk density) where measured before tillage treatment and after the cropping season. Additionally, crop performance (plant height, yield, residual biomass and root depth) and measurements on infiltration, sediment yield and runoff were collected. Tillage depth was significantly higher in DT (60 cm) followed by BT (27.58 cm) and CT (18.13cm). At the end of the season, the measured penetration resistance was significantly (p<0.01) lower at 20 cm depth in the DT and BT plots compared to the NT and the CT treatments. Infiltration rates increased from 115.2 mm hr-1(NT), 120 mm hr-1(CT) to 242.4 mm hr-1(DT), 261.6 mm hr-1(BT) (p<0.01) . The total runoff depth significantly decreased in the DT (29.46 mm) and BT treatments (33.53 mm) as compared to the CT (71.45 mm) and NT (98.77 mm) (p < 0.05). Similarly higher sediment yields were recorded for the CT (5.5 t ha-1) and NT (6.6 t ha-1) compared to the DT (2.6 tha-1) and BT (2.6 t ha-1) plots. Deeper tillage in DT and BT treatments as well as the presence of invisible barriers along the contour in Berken system could be the reason for the observed increase in filtration and the reduction of runoff and soil loss. On the other hand, the root length under DT was (> 50cm) followed by BT (>40cm) and NT and CT (both < 30 cm). Grain yield of maize was significantly lower in the NT (2.6 t ha-1) compared to yields measured in the CT (3.8 t ha-1), DT (3.8t ha-1) and BT (4.0 t ha-1) treatments (p <0.05). Results show that improved tillage practices such as deep tillage or Berken plough could increase permeability and herefore root penetration and agricultural productivity whilst decreasing erosion and runoff in the Ethiopian Highlands. The adoption of these techniques in the Ethiopian highlands could improve the sustainability of rainfed agriculture and reduce the environmental impacts associated with traditional tillage practices.
format Conference Paper
id CGSpace99048
institution CGIAR Consortium
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling CGSpace990482025-10-14T15:09:09Z Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only] Muche, H. Abdela, M. Schmitter, Petra S. Nakawuka, Prossie Tilahun, Seifu A. Steenhuis, Tammo S. Langan, Simon J. crop production crop yield productivity infiltration tillage penetration grain maize erosion runoff Long term use of Maresha plow, a conventional plow pulled by oxen, has resulted in the formation of a restrictive layer thereby limiting water movement and aeration as well as root zone penetration in the soil profile. Several studies have shown that improved tillage practices can positively affect infiltration and aeration resulting in increased rainwater use efficiency and agricultural production. However, rather limited information is available about the use of the Berken plough as a potential alternative for tillage practices. We studied the impact of improved tillage practices on infiltration, erosion, runoff and crop productivity during the rainy period of 2016 in Robit-Bata watershed located in upper Blue Nile, Ethiopia. The experiments were carried out in Maize fields where four tillage treatments were compared: (i) no-till (NT), no ploughing; (ii) conventional (CT), plots tilled three times using oxen driven Maresha, (iii) deep (DT), manual digging up to 60 cm using a mattock and (iv) Berken tillage (BT), plots tilled three times using an oxen driven Berken plough. Soil physical parameters (e.g. penetration resistance, bulk density) where measured before tillage treatment and after the cropping season. Additionally, crop performance (plant height, yield, residual biomass and root depth) and measurements on infiltration, sediment yield and runoff were collected. Tillage depth was significantly higher in DT (60 cm) followed by BT (27.58 cm) and CT (18.13cm). At the end of the season, the measured penetration resistance was significantly (p<0.01) lower at 20 cm depth in the DT and BT plots compared to the NT and the CT treatments. Infiltration rates increased from 115.2 mm hr-1(NT), 120 mm hr-1(CT) to 242.4 mm hr-1(DT), 261.6 mm hr-1(BT) (p<0.01) . The total runoff depth significantly decreased in the DT (29.46 mm) and BT treatments (33.53 mm) as compared to the CT (71.45 mm) and NT (98.77 mm) (p < 0.05). Similarly higher sediment yields were recorded for the CT (5.5 t ha-1) and NT (6.6 t ha-1) compared to the DT (2.6 tha-1) and BT (2.6 t ha-1) plots. Deeper tillage in DT and BT treatments as well as the presence of invisible barriers along the contour in Berken system could be the reason for the observed increase in filtration and the reduction of runoff and soil loss. On the other hand, the root length under DT was (> 50cm) followed by BT (>40cm) and NT and CT (both < 30 cm). Grain yield of maize was significantly lower in the NT (2.6 t ha-1) compared to yields measured in the CT (3.8 t ha-1), DT (3.8t ha-1) and BT (4.0 t ha-1) treatments (p <0.05). Results show that improved tillage practices such as deep tillage or Berken plough could increase permeability and herefore root penetration and agricultural productivity whilst decreasing erosion and runoff in the Ethiopian Highlands. The adoption of these techniques in the Ethiopian highlands could improve the sustainability of rainfed agriculture and reduce the environmental impacts associated with traditional tillage practices. 2017 2019-01-11T06:36:39Z 2019-01-11T06:36:39Z Conference Paper https://hdl.handle.net/10568/99048 en Limited Access Muche, H.; Abdela, M.; Schmitter, Petra; Nakawuka, Prossie; Tilahun, S. A.; Steenhuis, T.; Langan, Simon. 2017. Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only] Paper presented at the 5th International Conference on the Advancement of Science and Technology, Bahir Dar University, Ethiopia. 1p.
spellingShingle crop production
crop yield
productivity
infiltration
tillage
penetration
grain
maize
erosion
runoff
Muche, H.
Abdela, M.
Schmitter, Petra S.
Nakawuka, Prossie
Tilahun, Seifu A.
Steenhuis, Tammo S.
Langan, Simon J.
Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title_full Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title_fullStr Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title_full_unstemmed Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title_short Application of deep tillage and Berken Maresha for hardpan sites to improve infiltration and crop productivity [Abstract only]
title_sort application of deep tillage and berken maresha for hardpan sites to improve infiltration and crop productivity abstract only
topic crop production
crop yield
productivity
infiltration
tillage
penetration
grain
maize
erosion
runoff
url https://hdl.handle.net/10568/99048
work_keys_str_mv AT mucheh applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT abdelam applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT schmitterpetras applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT nakawukaprossie applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT tilahunseifua applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT steenhuistammos applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly
AT langansimonj applicationofdeeptillageandberkenmareshaforhardpansitestoimproveinfiltrationandcropproductivityabstractonly