Multimodel ensembles improve predictions of crop–environment–management interactions

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallach, Daniel, Martre, Pierre, Liu, Bing, Asseng, Senthold, Ewert, Frank, Thorburn, Peter J., Ittersum, Martin K. van, Aggarwal, Pramod K., Ahmed, Mukhtar, Basso, Bruno, Biernath, Christian, Cammarano, Davide, Challinor, Andrew J., Sanctis, Giacomo de, Dumont, Benjamin, Eyshi Rezaei, Ehsan, Fereres, Elias, Fitzgerald, Glenn J., Gao, Y, García Vila, Margarita, Gayler, Sebastian, Girousse, Christine, Hoogenboom, Gerrit, Horan, Heidi, Izaurralde, Roberto César, Jones, Curtis D., Kassie, Belay T., Kersebaum, Kurt-Christian, Klein, Christian, Köhler, Ann-Kristin, Maiorano, Andrea, Minoli, Sara, Müller, Christoph, Naresh Kumar, Soora, Nendel, Claas, O’Leary, Garry J., Palosuo, Taru, Priesack, Eckart, Ripoche, Dominique, Rötter, Reimund P., Semenov, Mikhail A., Stöckle, Claudio O., Stratonovitch, Pierre, Streck, Thilo, Supit, Iwan, Tao, Fulu, Wolf, Joost, Zhang, Zhao
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley 2018
Materias:
Acceso en línea:https://hdl.handle.net/10568/97157

Ejemplares similares: Multimodel ensembles improve predictions of crop–environment–management interactions