A review of forest and tree plantation biomass equations in Indonesia

We compiled 2,458 biomass equations from 168 destructive sampling studies in Indonesia. Unpublished academic theses contributed the largest share of the biomass equations. The availability of the biomass equations was skewed to certain regions, forest types, and species. Further research is necessar...

Descripción completa

Detalles Bibliográficos
Autores principales: Anitha, K., Verchot, Louis V., Joseph, S., Herold, Martin, Manuri, S., Avitabile, Valerio
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2015
Materias:
Acceso en línea:https://hdl.handle.net/10568/95255
_version_ 1855513890433007616
author Anitha, K.
Verchot, Louis V.
Joseph, S.
Herold, Martin
Manuri, S.
Avitabile, Valerio
author_browse Anitha, K.
Avitabile, Valerio
Herold, Martin
Joseph, S.
Manuri, S.
Verchot, Louis V.
author_facet Anitha, K.
Verchot, Louis V.
Joseph, S.
Herold, Martin
Manuri, S.
Avitabile, Valerio
author_sort Anitha, K.
collection Repository of Agricultural Research Outputs (CGSpace)
description We compiled 2,458 biomass equations from 168 destructive sampling studies in Indonesia. Unpublished academic theses contributed the largest share of the biomass equations. The availability of the biomass equations was skewed to certain regions, forest types, and species. Further research is necessary to fill the data gaps in emission factors and to enhance the implementation of climate change mitigation projects and programs.Locally derived allometric equations contribute to reducing the uncertainty in the estimation of biomass, which may be useful in the implementation of climate change mitigation projects and programs in the forestry sector. Many regional and global efforts are underway to compile allometric equations.The present study compiles the available allometric equations in Indonesia and evaluates their adequacy in estimating biomass in the different types of forest across the archipelago.A systematic survey of the scientific literature was conducted to compile the biomass equations, including ISI publications, national journals, conference proceedings, scientific reports, and academic theses. The data collected were overlaid on a land use/land cover map to assess the spatial distribution with respect to different regions and land cover types. The validation of the equations for selected forest types was carried out using independent destructive sampling data.A total of 2,458 biomass equations from 168 destructive sampling studies were compiled. Unpublished academic theses contributed the majority of the biomass equations. Twenty-one habitat types and 65 species were studied in detail. Diameter was the most widely used single predictor in all allometric equations. The cumulative number of individual trees cut was 5,207. The islands of Java, Kalimantan, and Sumatra were the most studied, while other regions were underexplored or unexplored. More than half of the biomass equations were for just seven species. The majority of the studies were carried out in plantation forests and secondary forests, while primary forests remain largely understudied. Validation using independent data showed that the allometric models for peat swamp forest had lower error departure, while the models for lowland dipterocarp forest had higher error departure.Although biomass studies are a major research activity in Indonesia due to its high forest cover, the majority of such activities are limited to certain regions, forest types, and species. More research is required to cover underrepresented regions, forest types, particular growth forms, and very large tree diameter classes.
format Journal Article
id CGSpace95255
institution CGIAR Consortium
language Inglés
publishDate 2015
publishDateRange 2015
publishDateSort 2015
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace952552025-06-17T08:23:12Z A review of forest and tree plantation biomass equations in Indonesia Anitha, K. Verchot, Louis V. Joseph, S. Herold, Martin Manuri, S. Avitabile, Valerio allometry equations biomass forest inventories ecology forestry We compiled 2,458 biomass equations from 168 destructive sampling studies in Indonesia. Unpublished academic theses contributed the largest share of the biomass equations. The availability of the biomass equations was skewed to certain regions, forest types, and species. Further research is necessary to fill the data gaps in emission factors and to enhance the implementation of climate change mitigation projects and programs.Locally derived allometric equations contribute to reducing the uncertainty in the estimation of biomass, which may be useful in the implementation of climate change mitigation projects and programs in the forestry sector. Many regional and global efforts are underway to compile allometric equations.The present study compiles the available allometric equations in Indonesia and evaluates their adequacy in estimating biomass in the different types of forest across the archipelago.A systematic survey of the scientific literature was conducted to compile the biomass equations, including ISI publications, national journals, conference proceedings, scientific reports, and academic theses. The data collected were overlaid on a land use/land cover map to assess the spatial distribution with respect to different regions and land cover types. The validation of the equations for selected forest types was carried out using independent destructive sampling data.A total of 2,458 biomass equations from 168 destructive sampling studies were compiled. Unpublished academic theses contributed the majority of the biomass equations. Twenty-one habitat types and 65 species were studied in detail. Diameter was the most widely used single predictor in all allometric equations. The cumulative number of individual trees cut was 5,207. The islands of Java, Kalimantan, and Sumatra were the most studied, while other regions were underexplored or unexplored. More than half of the biomass equations were for just seven species. The majority of the studies were carried out in plantation forests and secondary forests, while primary forests remain largely understudied. Validation using independent data showed that the allometric models for peat swamp forest had lower error departure, while the models for lowland dipterocarp forest had higher error departure.Although biomass studies are a major research activity in Indonesia due to its high forest cover, the majority of such activities are limited to certain regions, forest types, and species. More research is required to cover underrepresented regions, forest types, particular growth forms, and very large tree diameter classes. 2015-12 2018-07-03T11:02:40Z 2018-07-03T11:02:40Z Journal Article https://hdl.handle.net/10568/95255 en Open Access Springer Anitha, K., Verchot, L.V., Joseph, S., Herold, M., Manuri, S., Avitabile, V.. 2015. A review of forest and tree plantation biomass equations in Indonesia Annals of Forest Science, : 981-997. https://doi.org/10.1007/s13595-015-0507-4
spellingShingle allometry
equations
biomass
forest inventories
ecology
forestry
Anitha, K.
Verchot, Louis V.
Joseph, S.
Herold, Martin
Manuri, S.
Avitabile, Valerio
A review of forest and tree plantation biomass equations in Indonesia
title A review of forest and tree plantation biomass equations in Indonesia
title_full A review of forest and tree plantation biomass equations in Indonesia
title_fullStr A review of forest and tree plantation biomass equations in Indonesia
title_full_unstemmed A review of forest and tree plantation biomass equations in Indonesia
title_short A review of forest and tree plantation biomass equations in Indonesia
title_sort review of forest and tree plantation biomass equations in indonesia
topic allometry
equations
biomass
forest inventories
ecology
forestry
url https://hdl.handle.net/10568/95255
work_keys_str_mv AT anithak areviewofforestandtreeplantationbiomassequationsinindonesia
AT verchotlouisv areviewofforestandtreeplantationbiomassequationsinindonesia
AT josephs areviewofforestandtreeplantationbiomassequationsinindonesia
AT heroldmartin areviewofforestandtreeplantationbiomassequationsinindonesia
AT manuris areviewofforestandtreeplantationbiomassequationsinindonesia
AT avitabilevalerio areviewofforestandtreeplantationbiomassequationsinindonesia
AT anithak reviewofforestandtreeplantationbiomassequationsinindonesia
AT verchotlouisv reviewofforestandtreeplantationbiomassequationsinindonesia
AT josephs reviewofforestandtreeplantationbiomassequationsinindonesia
AT heroldmartin reviewofforestandtreeplantationbiomassequationsinindonesia
AT manuris reviewofforestandtreeplantationbiomassequationsinindonesia
AT avitabilevalerio reviewofforestandtreeplantationbiomassequationsinindonesia