Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems
Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at dif...
| Main Authors: | , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Elsevier
2018
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/91198 |
| _version_ | 1855525075485196288 |
|---|---|
| author | Ortíz Gonzalo, Daniel Neergaard, Andreas de Vaast, Philippe Suárez-Villanueva, Víctor Oelofse, Myles Rosenstock, Todd S. |
| author_browse | Neergaard, Andreas de Oelofse, Myles Ortíz Gonzalo, Daniel Rosenstock, Todd S. Suárez-Villanueva, Víctor Vaast, Philippe |
| author_facet | Ortíz Gonzalo, Daniel Neergaard, Andreas de Vaast, Philippe Suárez-Villanueva, Víctor Oelofse, Myles Rosenstock, Todd S. |
| author_sort | Ortíz Gonzalo, Daniel |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9 kg N2O-N ha− 1, 6.5 to 7.6 Mg CO2-C ha− 1 and − 3.4 to − 2.2 kg CH4 -C ha− 1, with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N2O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots – around the perimeter of coffee trees or within planted maize rows – than in unfertilised locations between trees, rows and planting holes. Background and induced soil N2O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. |
| format | Journal Article |
| id | CGSpace91198 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2018 |
| publishDateRange | 2018 |
| publishDateSort | 2018 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace911982025-02-19T13:42:22Z Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems Ortíz Gonzalo, Daniel Neergaard, Andreas de Vaast, Philippe Suárez-Villanueva, Víctor Oelofse, Myles Rosenstock, Todd S. agriculture climate change food security livestock Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9 kg N2O-N ha− 1, 6.5 to 7.6 Mg CO2-C ha− 1 and − 3.4 to − 2.2 kg CH4 -C ha− 1, with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N2O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots – around the perimeter of coffee trees or within planted maize rows – than in unfertilised locations between trees, rows and planting holes. Background and induced soil N2O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. 2018-06 2018-02-27T13:29:33Z 2018-02-27T13:29:33Z Journal Article https://hdl.handle.net/10568/91198 en Open Access Elsevier Ortiz-Gonzalo D, de Neergaard A, Vaast P, Suárez-Villanueva V, Oelofse M, Rosenstock TS. 2018. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems. Science of The Total Environment 626:328–339. |
| spellingShingle | agriculture climate change food security livestock Ortíz Gonzalo, Daniel Neergaard, Andreas de Vaast, Philippe Suárez-Villanueva, Víctor Oelofse, Myles Rosenstock, Todd S. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title | Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title_full | Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title_fullStr | Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title_full_unstemmed | Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title_short | Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems |
| title_sort | multi scale measurements show limited soil greenhouse gas emissions in kenyan smallholder coffee dairy systems |
| topic | agriculture climate change food security livestock |
| url | https://hdl.handle.net/10568/91198 |
| work_keys_str_mv | AT ortizgonzalodaniel multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems AT neergaardandreasde multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems AT vaastphilippe multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems AT suarezvillanuevavictor multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems AT oelofsemyles multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems AT rosenstocktodds multiscalemeasurementsshowlimitedsoilgreenhousegasemissionsinkenyansmallholdercoffeedairysystems |