Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning

Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extrac...

Descripción completa

Detalles Bibliográficos
Autores principales: Hengl, T., Leenaars, Johan G.B., Shepherd, Keith D., Walsh, Markus G., Heuvelink, Gerard B.M., Mamo, T., Tilahun, H., Berkhout, Ezra D., Cooper, M., Fegraus, E., Wheeler, I., Kwabena, N. A.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2017
Materias:
Acceso en línea:https://hdl.handle.net/10568/83171
_version_ 1855540783601418240
author Hengl, T.
Leenaars, Johan G.B.
Shepherd, Keith D.
Walsh, Markus G.
Heuvelink, Gerard B.M.
Mamo, T.
Tilahun, H.
Berkhout, Ezra D.
Cooper, M.
Fegraus, E.
Wheeler, I.
Kwabena, N. A.
author_browse Berkhout, Ezra D.
Cooper, M.
Fegraus, E.
Hengl, T.
Heuvelink, Gerard B.M.
Kwabena, N. A.
Leenaars, Johan G.B.
Mamo, T.
Shepherd, Keith D.
Tilahun, H.
Walsh, Markus G.
Wheeler, I.
author_facet Hengl, T.
Leenaars, Johan G.B.
Shepherd, Keith D.
Walsh, Markus G.
Heuvelink, Gerard B.M.
Mamo, T.
Tilahun, H.
Berkhout, Ezra D.
Cooper, M.
Fegraus, E.
Wheeler, I.
Kwabena, N. A.
author_sort Hengl, T.
collection Repository of Agricultural Research Outputs (CGSpace)
description Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms.
format Journal Article
id CGSpace83171
institution CGIAR Consortium
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace831712024-01-17T12:58:34Z Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning Hengl, T. Leenaars, Johan G.B. Shepherd, Keith D. Walsh, Markus G. Heuvelink, Gerard B.M. Mamo, T. Tilahun, H. Berkhout, Ezra D. Cooper, M. Fegraus, E. Wheeler, I. Kwabena, N. A. macro-nutrients micro-nutrients random forest machine learning soil nutrient map spatial prediction Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms. 2017-09 2017-08-18T08:32:10Z 2017-08-18T08:32:10Z Journal Article https://hdl.handle.net/10568/83171 en Open Access application/pdf Springer Hengl, T.; Leenaars, J. G. B.; Shepherd, K. D.; Walsh, M. G.; Heuvelink, G. B. M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; Wheeler, I.; Kwabena, N. A.2017.Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems.109(1) 77–102pp. doi:10.1007/s10705-017-9870-x
spellingShingle macro-nutrients
micro-nutrients
random forest
machine learning
soil nutrient map
spatial prediction
Hengl, T.
Leenaars, Johan G.B.
Shepherd, Keith D.
Walsh, Markus G.
Heuvelink, Gerard B.M.
Mamo, T.
Tilahun, H.
Berkhout, Ezra D.
Cooper, M.
Fegraus, E.
Wheeler, I.
Kwabena, N. A.
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title_full Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title_fullStr Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title_full_unstemmed Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title_short Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
title_sort soil nutrient maps of sub saharan africa assessment of soil nutrient content at 250 m spatial resolution using machine learning
topic macro-nutrients
micro-nutrients
random forest
machine learning
soil nutrient map
spatial prediction
url https://hdl.handle.net/10568/83171
work_keys_str_mv AT henglt soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT leenaarsjohangb soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT shepherdkeithd soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT walshmarkusg soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT heuvelinkgerardbm soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT mamot soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT tilahunh soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT berkhoutezrad soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT cooperm soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT fegrause soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT wheeleri soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning
AT kwabenana soilnutrientmapsofsubsaharanafricaassessmentofsoilnutrientcontentat250mspatialresolutionusingmachinelearning