New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression

The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven...

Descripción completa

Detalles Bibliográficos
Autores principales: Ichii, Kazuhito, Ueyama, Masahito, Masayuki Kondo, Saigusa, Nobuko, Kim, Joon, Alberto, Ma. Carmelita R., Ardö, Jonas, Euskirchen, Eugenie S., Minseok Kang, Hirano, Takashi, Joiner, Joanna, Kobayashi, Hideki, Belelli Marchesini, Luca, Merbold, Lutz, Miyata, Akira, Saitoh, Taku M., Takagi, Kentaro, Varlagin, Andrej, Bret-Harte, Marion Syndonia, Kenzo Kitamura, Kosugi, Yoshiko, Ayumi Kotani, Kumar, K., Li, Shenggong, Machimura, Takashi, Yojiro Matsuura, Yasuko Mizoguchi, Takeshi Ohta, Mukherjee, Sandipan, Yuji Yanagi, Yasuda, Yukio, Yiping, Zhang, Fenghua Zhao
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley 2017
Materias:
Acceso en línea:https://hdl.handle.net/10568/82763
_version_ 1855531765746106368
author Ichii, Kazuhito
Ueyama, Masahito
Masayuki Kondo
Saigusa, Nobuko
Kim, Joon
Alberto, Ma. Carmelita R.
Ardö, Jonas
Euskirchen, Eugenie S.
Minseok Kang
Hirano, Takashi
Joiner, Joanna
Kobayashi, Hideki
Belelli Marchesini, Luca
Merbold, Lutz
Miyata, Akira
Saitoh, Taku M.
Takagi, Kentaro
Varlagin, Andrej
Bret-Harte, Marion Syndonia
Kenzo Kitamura
Kosugi, Yoshiko
Ayumi Kotani
Kumar, K.
Li, Shenggong
Machimura, Takashi
Yojiro Matsuura
Yasuko Mizoguchi
Takeshi Ohta
Mukherjee, Sandipan
Yuji Yanagi
Yasuda, Yukio
Yiping, Zhang
Fenghua Zhao
author_browse Alberto, Ma. Carmelita R.
Ardö, Jonas
Ayumi Kotani
Belelli Marchesini, Luca
Bret-Harte, Marion Syndonia
Euskirchen, Eugenie S.
Fenghua Zhao
Hirano, Takashi
Ichii, Kazuhito
Joiner, Joanna
Kenzo Kitamura
Kim, Joon
Kobayashi, Hideki
Kosugi, Yoshiko
Kumar, K.
Li, Shenggong
Machimura, Takashi
Masayuki Kondo
Merbold, Lutz
Minseok Kang
Miyata, Akira
Mukherjee, Sandipan
Saigusa, Nobuko
Saitoh, Taku M.
Takagi, Kentaro
Takeshi Ohta
Ueyama, Masahito
Varlagin, Andrej
Yasuda, Yukio
Yasuko Mizoguchi
Yiping, Zhang
Yojiro Matsuura
Yuji Yanagi
author_facet Ichii, Kazuhito
Ueyama, Masahito
Masayuki Kondo
Saigusa, Nobuko
Kim, Joon
Alberto, Ma. Carmelita R.
Ardö, Jonas
Euskirchen, Eugenie S.
Minseok Kang
Hirano, Takashi
Joiner, Joanna
Kobayashi, Hideki
Belelli Marchesini, Luca
Merbold, Lutz
Miyata, Akira
Saitoh, Taku M.
Takagi, Kentaro
Varlagin, Andrej
Bret-Harte, Marion Syndonia
Kenzo Kitamura
Kosugi, Yoshiko
Ayumi Kotani
Kumar, K.
Li, Shenggong
Machimura, Takashi
Yojiro Matsuura
Yasuko Mizoguchi
Takeshi Ohta
Mukherjee, Sandipan
Yuji Yanagi
Yasuda, Yukio
Yiping, Zhang
Fenghua Zhao
author_sort Ichii, Kazuhito
collection Repository of Agricultural Research Outputs (CGSpace)
description The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
format Journal Article
id CGSpace82763
institution CGIAR Consortium
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
publisher Wiley
publisherStr Wiley
record_format dspace
spelling CGSpace827632025-03-11T12:14:31Z New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression Ichii, Kazuhito Ueyama, Masahito Masayuki Kondo Saigusa, Nobuko Kim, Joon Alberto, Ma. Carmelita R. Ardö, Jonas Euskirchen, Eugenie S. Minseok Kang Hirano, Takashi Joiner, Joanna Kobayashi, Hideki Belelli Marchesini, Luca Merbold, Lutz Miyata, Akira Saitoh, Taku M. Takagi, Kentaro Varlagin, Andrej Bret-Harte, Marion Syndonia Kenzo Kitamura Kosugi, Yoshiko Ayumi Kotani Kumar, K. Li, Shenggong Machimura, Takashi Yojiro Matsuura Yasuko Mizoguchi Takeshi Ohta Mukherjee, Sandipan Yuji Yanagi Yasuda, Yukio Yiping, Zhang Fenghua Zhao data The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models. 2017-04 2017-07-13T10:03:50Z 2017-07-13T10:03:50Z Journal Article https://hdl.handle.net/10568/82763 en Open Access Wiley Ichii, K., et al. 2017. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research: Biogeosciences 122(4):767–795.
spellingShingle data
Ichii, Kazuhito
Ueyama, Masahito
Masayuki Kondo
Saigusa, Nobuko
Kim, Joon
Alberto, Ma. Carmelita R.
Ardö, Jonas
Euskirchen, Eugenie S.
Minseok Kang
Hirano, Takashi
Joiner, Joanna
Kobayashi, Hideki
Belelli Marchesini, Luca
Merbold, Lutz
Miyata, Akira
Saitoh, Taku M.
Takagi, Kentaro
Varlagin, Andrej
Bret-Harte, Marion Syndonia
Kenzo Kitamura
Kosugi, Yoshiko
Ayumi Kotani
Kumar, K.
Li, Shenggong
Machimura, Takashi
Yojiro Matsuura
Yasuko Mizoguchi
Takeshi Ohta
Mukherjee, Sandipan
Yuji Yanagi
Yasuda, Yukio
Yiping, Zhang
Fenghua Zhao
New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title_full New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title_fullStr New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title_full_unstemmed New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title_short New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
title_sort new data driven estimation of terrestrial co2 fluxes in asia using a standardized database of eddy covariance measurements remote sensing data and support vector regression
topic data
url https://hdl.handle.net/10568/82763
work_keys_str_mv AT ichiikazuhito newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT ueyamamasahito newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT masayukikondo newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT saigusanobuko newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT kimjoon newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT albertomacarmelitar newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT ardojonas newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT euskircheneugenies newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT minseokkang newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT hiranotakashi newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT joinerjoanna newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT kobayashihideki newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT belellimarchesiniluca newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT merboldlutz newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT miyataakira newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT saitohtakum newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT takagikentaro newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT varlaginandrej newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT brethartemarionsyndonia newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT kenzokitamura newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT kosugiyoshiko newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT ayumikotani newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT kumark newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT lishenggong newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT machimuratakashi newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT yojiromatsuura newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT yasukomizoguchi newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT takeshiohta newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT mukherjeesandipan newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT yujiyanagi newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT yasudayukio newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT yipingzhang newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression
AT fenghuazhao newdatadrivenestimationofterrestrialco2fluxesinasiausingastandardizeddatabaseofeddycovariancemeasurementsremotesensingdataandsupportvectorregression