Genetic Architecture of a Rice Nested Association Mapping Population

Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we d...

Descripción completa

Detalles Bibliográficos
Autores principales: Fragoso, Christopher A., Moreno, Maria, Wang, Zuoheng, Heffelfinger, Christopher, Arbeláez, Lady J., Aguirre, John A., Franco, Natalia, Romero, Luz Elena, Labadie, Karine, Zhao, Hongyu, Dellaporta, Stephen L., Lorieux, Mathias
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://hdl.handle.net/10568/82587
_version_ 1855518031538552832
author Fragoso, Christopher A.
Moreno, Maria
Wang, Zuoheng
Heffelfinger, Christopher
Arbeláez, Lady J.
Aguirre, John A.
Franco, Natalia
Romero, Luz Elena
Labadie, Karine
Zhao, Hongyu
Dellaporta, Stephen L.
Lorieux, Mathias
author_browse Aguirre, John A.
Arbeláez, Lady J.
Dellaporta, Stephen L.
Fragoso, Christopher A.
Franco, Natalia
Heffelfinger, Christopher
Labadie, Karine
Lorieux, Mathias
Moreno, Maria
Romero, Luz Elena
Wang, Zuoheng
Zhao, Hongyu
author_facet Fragoso, Christopher A.
Moreno, Maria
Wang, Zuoheng
Heffelfinger, Christopher
Arbeláez, Lady J.
Aguirre, John A.
Franco, Natalia
Romero, Luz Elena
Labadie, Karine
Zhao, Hongyu
Dellaporta, Stephen L.
Lorieux, Mathias
author_sort Fragoso, Christopher A.
collection Repository of Agricultural Research Outputs (CGSpace)
description Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe a set of 1879 rice NAM lines created through the selfing and single-seed descent of F1 hybrids derived from elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica alleles were captured at every queried locus despite the presence of segregation distortion factors. Several distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and multi-point genetic map calculations, our datasets achieved the ∼1500 cM expected map size in rice. Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the 10 populations, by confirming known QTL locations for the trait days to heading.
format Journal Article
id CGSpace82587
institution CGIAR Consortium
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace825872025-03-13T09:44:01Z Genetic Architecture of a Rice Nested Association Mapping Population Fragoso, Christopher A. Moreno, Maria Wang, Zuoheng Heffelfinger, Christopher Arbeláez, Lady J. Aguirre, John A. Franco, Natalia Romero, Luz Elena Labadie, Karine Zhao, Hongyu Dellaporta, Stephen L. Lorieux, Mathias plant genetics quantitative trait loci genetic maps plant breeding bioinformatics fitogenética loci de rasgos cuantitativos mapas genéticos fitomejoramiento bioinformática genetics molecular biology Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe a set of 1879 rice NAM lines created through the selfing and single-seed descent of F1 hybrids derived from elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica alleles were captured at every queried locus despite the presence of segregation distortion factors. Several distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and multi-point genetic map calculations, our datasets achieved the ∼1500 cM expected map size in rice. Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the 10 populations, by confirming known QTL locations for the trait days to heading. 2017-06-01 2017-06-23T21:15:20Z 2017-06-23T21:15:20Z Journal Article https://hdl.handle.net/10568/82587 en Open Access Oxford University Press Fragoso, Christopher A.; Moreno, Maria; Wang, Zuoheng; Heffelfinger, Christopher; Arbelaez, Lady J.; Aguirre, John A.; Franco, Natalia; Romero, Luz E.; Labadie, Karine; Zhao, Hongyu; Dellaporta, Stephen L.; Lorieux, Mathias. 2017. Genetic Architecture of a Rice Nested Association Mapping Population . G3: Genes, Genomes, Genetics 7(6): 1913-1926.
spellingShingle plant genetics
quantitative trait loci
genetic maps
plant breeding
bioinformatics
fitogenética
loci de rasgos cuantitativos
mapas genéticos
fitomejoramiento
bioinformática
genetics
molecular biology
Fragoso, Christopher A.
Moreno, Maria
Wang, Zuoheng
Heffelfinger, Christopher
Arbeláez, Lady J.
Aguirre, John A.
Franco, Natalia
Romero, Luz Elena
Labadie, Karine
Zhao, Hongyu
Dellaporta, Stephen L.
Lorieux, Mathias
Genetic Architecture of a Rice Nested Association Mapping Population
title Genetic Architecture of a Rice Nested Association Mapping Population
title_full Genetic Architecture of a Rice Nested Association Mapping Population
title_fullStr Genetic Architecture of a Rice Nested Association Mapping Population
title_full_unstemmed Genetic Architecture of a Rice Nested Association Mapping Population
title_short Genetic Architecture of a Rice Nested Association Mapping Population
title_sort genetic architecture of a rice nested association mapping population
topic plant genetics
quantitative trait loci
genetic maps
plant breeding
bioinformatics
fitogenética
loci de rasgos cuantitativos
mapas genéticos
fitomejoramiento
bioinformática
genetics
molecular biology
url https://hdl.handle.net/10568/82587
work_keys_str_mv AT fragosochristophera geneticarchitectureofaricenestedassociationmappingpopulation
AT morenomaria geneticarchitectureofaricenestedassociationmappingpopulation
AT wangzuoheng geneticarchitectureofaricenestedassociationmappingpopulation
AT heffelfingerchristopher geneticarchitectureofaricenestedassociationmappingpopulation
AT arbelaezladyj geneticarchitectureofaricenestedassociationmappingpopulation
AT aguirrejohna geneticarchitectureofaricenestedassociationmappingpopulation
AT franconatalia geneticarchitectureofaricenestedassociationmappingpopulation
AT romeroluzelena geneticarchitectureofaricenestedassociationmappingpopulation
AT labadiekarine geneticarchitectureofaricenestedassociationmappingpopulation
AT zhaohongyu geneticarchitectureofaricenestedassociationmappingpopulation
AT dellaportastephenl geneticarchitectureofaricenestedassociationmappingpopulation
AT lorieuxmathias geneticarchitectureofaricenestedassociationmappingpopulation