Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction

In this study, host-specific forms of the blast pathogen Magnaporthe oryzae in sub-Saharan Africa (SSA) were characterised from distinct cropping locations using a combination of molecular and biological assays. Finger millet blast populations in East Africa revealed a continuous genetic variation p...

Descripción completa

Detalles Bibliográficos
Autores principales: Takan, J.P., Chipili, J., Muthumeenakshi, S., Talbot, N.J., Manyasa, E.O., Bandyopadhyay, Ranajit, Sere, Y., Nutsugah, S.K., Talhinhas, P., Hossain, M.A., Brown, A., Sreenivasaprasad, S.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2012
Materias:
Acceso en línea:https://hdl.handle.net/10568/79826
Descripción
Sumario:In this study, host-specific forms of the blast pathogen Magnaporthe oryzae in sub-Saharan Africa (SSA) were characterised from distinct cropping locations using a combination of molecular and biological assays. Finger millet blast populations in East Africa revealed a continuous genetic variation pattern and lack of clonal lineages, with a wide range of haplotypes. M. oryzae populations lacked the grasshopper (grh) element (96%) and appeared distinct to those in Asia. An overall near equal distribution (47–53%) of the mating types MAT1-1 and MAT1-2, high fertility status (84–89%) and the dominance of hermaphrodites (64%) suggest a strong sexual reproductive potential. Differences in pathogen aggressiveness and lack of cultivar incompatibility suggest the importance of quantitative resistance. Rice blast populations in West Africa showed a typical lineage-based structure. Among the nine lineages identified, three comprised ~90% of the isolates. Skewed distribution of the mating types MAT1-1 (29%) and MAT1-2 (71%) was accompanied by low fertility. Clear differences in cultivar compatibility within and between lineages suggest R gene-mediated interactions. Distinctive patterns of genetic diversity, sexual reproductive potential and pathogenicity suggest adaptive divergence of host-specific forms of M. oryzae populations linked to crop domestication and agricultural intensification.