Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI)
Nitrification, a step in nitrogen (N) cycle, results in gaseous N emissions and NO3- leaching. In most natural ecosystems, where nitrification is reduced to a minor flux, do not leak N. In contrast, modern agricultural systems are characterized by unrestricted rapid nitrification, resulting in the l...
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Book Chapter |
| Language: | Inglés |
| Published: |
Interamerican Council for Sustainable Agriculture (ICSA)
2008
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/77821 |
| _version_ | 1855524343193272320 |
|---|---|
| author | Subbaraoa, Guntur V. Ito, O. Ishikawa, T. Watanabe, Tomonari Nakahara, Kazuhiko Rao, Idupulapati M. Hurtado S., Maria del Pilar Rondón, Marco Antonio Tomohiro, Ban Masahiro, K. Hash, C.T. |
| author_browse | Hash, C.T. Hurtado S., Maria del Pilar Ishikawa, T. Ito, O. Masahiro, K. Nakahara, Kazuhiko Rao, Idupulapati M. Rondón, Marco Antonio Subbaraoa, Guntur V. Tomohiro, Ban Watanabe, Tomonari |
| author_facet | Subbaraoa, Guntur V. Ito, O. Ishikawa, T. Watanabe, Tomonari Nakahara, Kazuhiko Rao, Idupulapati M. Hurtado S., Maria del Pilar Rondón, Marco Antonio Tomohiro, Ban Masahiro, K. Hash, C.T. |
| author_sort | Subbaraoa, Guntur V. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Nitrification, a step in nitrogen (N) cycle, results in gaseous N emissions and NO3- leaching. In most natural ecosystems, where nitrification is reduced to a minor flux, do not leak N. In contrast, modern agricultural systems are characterized by unrestricted rapid nitrification, resulting in the loss of nearly 70% of fertilizer N inputs. Recently we proposed that certain plant species suppress nitrification by releasing inhibitory compounds from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI). Using a recombinant luminous Nitrosomonas europaea assay to detect and quantify nitrification inhibitors released from roots (i.e., BNIactivity), several plant species including tropical pastures, cereals and legumes were surveyed for BNI capability. Several major crops including wheat lacked significant BNI capacity. Tropical forage grass – Brachiaria humidicola and cereal crop - sorghum, showed the highest BNI-capacity. Significant genotypic variability for BNI-compound release was detected in B. humidicola and several high-BNI genetic stocks are identified. Volga or mammoth wildrye (Leymus racemosus) a perennial member of the Triticeae and a wild relative of wheat showed high-BNI capacity, thus can potentially provide necessary genes for introducing BNI capacity into cultivated wheat. Once released from roots, BNI-compounds are functionally stable in suppressing soil nitrification. Field plots planted with B. humidicola suppressed nitrification and N2O emissions; in contrast, soybean, a species that lacked BNI-capacity, stimulated soil nitrification. Our quest in seeking genetic solutions to reduce nitrification and N2O emissions will result in the development of low-nitrifying, low-N2O emitting agricultural systems and contribute towards restraining climate change and global warming. |
| format | Book Chapter |
| id | CGSpace77821 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2008 |
| publishDateRange | 2008 |
| publishDateSort | 2008 |
| publisher | Interamerican Council for Sustainable Agriculture (ICSA) |
| publisherStr | Interamerican Council for Sustainable Agriculture (ICSA) |
| record_format | dspace |
| spelling | CGSpace778212025-03-13T09:44:13Z Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) Subbaraoa, Guntur V. Ito, O. Ishikawa, T. Watanabe, Tomonari Nakahara, Kazuhiko Rao, Idupulapati M. Hurtado S., Maria del Pilar Rondón, Marco Antonio Tomohiro, Ban Masahiro, K. Hash, C.T. nitrification inhibitors greenhouse gases farming systems nitrous oxide inhibidores de la nitrificación sistemas de explotación gases de efecto invernadero oxido nitroso Nitrification, a step in nitrogen (N) cycle, results in gaseous N emissions and NO3- leaching. In most natural ecosystems, where nitrification is reduced to a minor flux, do not leak N. In contrast, modern agricultural systems are characterized by unrestricted rapid nitrification, resulting in the loss of nearly 70% of fertilizer N inputs. Recently we proposed that certain plant species suppress nitrification by releasing inhibitory compounds from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI). Using a recombinant luminous Nitrosomonas europaea assay to detect and quantify nitrification inhibitors released from roots (i.e., BNIactivity), several plant species including tropical pastures, cereals and legumes were surveyed for BNI capability. Several major crops including wheat lacked significant BNI capacity. Tropical forage grass – Brachiaria humidicola and cereal crop - sorghum, showed the highest BNI-capacity. Significant genotypic variability for BNI-compound release was detected in B. humidicola and several high-BNI genetic stocks are identified. Volga or mammoth wildrye (Leymus racemosus) a perennial member of the Triticeae and a wild relative of wheat showed high-BNI capacity, thus can potentially provide necessary genes for introducing BNI capacity into cultivated wheat. Once released from roots, BNI-compounds are functionally stable in suppressing soil nitrification. Field plots planted with B. humidicola suppressed nitrification and N2O emissions; in contrast, soybean, a species that lacked BNI-capacity, stimulated soil nitrification. Our quest in seeking genetic solutions to reduce nitrification and N2O emissions will result in the development of low-nitrifying, low-N2O emitting agricultural systems and contribute towards restraining climate change and global warming. 2008 2016-11-22T15:43:13Z 2016-11-22T15:43:13Z Book Chapter https://hdl.handle.net/10568/77821 en Open Access Interamerican Council for Sustainable Agriculture (ICSA) Subbarao, G.V.; Ito, O.; Ishikawa, T.; Watanabe, Tomonari; Nakahara, Kazuhiko; Rao, Idupulapati Madhusudana; Hurtado, María del Pilar; Rondón, Marco Antonio; Tomohiro, Ban; Masahiro, K.; HASH, C.T.. 2008. Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) . In: International Conference on Sustainable Agriculture for Food, Energy and Industry 2008 (ICSA2008) (2008, Sapporo, Japan). Sustainability on food, feed, fiber, water, energy: Science, technologies, and global strategies: Proceedings . Interamerican Council for Sustainable Agriculture (ICSA), Sapporo, JP. p. 248-254. |
| spellingShingle | nitrification inhibitors greenhouse gases farming systems nitrous oxide inhibidores de la nitrificación sistemas de explotación gases de efecto invernadero oxido nitroso Subbaraoa, Guntur V. Ito, O. Ishikawa, T. Watanabe, Tomonari Nakahara, Kazuhiko Rao, Idupulapati M. Hurtado S., Maria del Pilar Rondón, Marco Antonio Tomohiro, Ban Masahiro, K. Hash, C.T. Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title | Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title_full | Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title_fullStr | Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title_full_unstemmed | Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title_short | Is there a genetic strategy to control nitrification and N2O emissions from agricultural systems? - biological Nitrification Inhibition (BNI) |
| title_sort | is there a genetic strategy to control nitrification and n2o emissions from agricultural systems biological nitrification inhibition bni |
| topic | nitrification inhibitors greenhouse gases farming systems nitrous oxide inhibidores de la nitrificación sistemas de explotación gases de efecto invernadero oxido nitroso |
| url | https://hdl.handle.net/10568/77821 |
| work_keys_str_mv | AT subbaraoagunturv isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT itoo isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT ishikawat isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT watanabetomonari isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT nakaharakazuhiko isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT raoidupulapatim isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT hurtadosmariadelpilar isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT rondonmarcoantonio isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT tomohiroban isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT masahirok isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni AT hashct isthereageneticstrategytocontrolnitrificationandn2oemissionsfromagriculturalsystemsbiologicalnitrificationinhibitionbni |