Leaf Phosphate Status, Photosynthesis, and Carbon Partitioning in Sugar Beet (IV. Changes with Time Following Increased Supply of Phosphate to Low-Phosphate Plants)

Changes in photosynthesis, carbon partitioning, and growth following resupply of orthophosphate (Pi) to moderately P-deficient plants (low-P) were determined for sugar beets (Beta vulgaris L. cv F58–554H1) cultured hydroponically in growth chambers. One set of plants was supplied with 1.0 mM Pi in h...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Idupulapati M., Terry, Norman
Formato: Journal Article
Lenguaje:Inglés
Publicado: American Society of Plant Biologists 1995
Materias:
Acceso en línea:https://hdl.handle.net/10568/77754
Descripción
Sumario:Changes in photosynthesis, carbon partitioning, and growth following resupply of orthophosphate (Pi) to moderately P-deficient plants (low-P) were determined for sugar beets (Beta vulgaris L. cv F58–554H1) cultured hydroponically in growth chambers. One set of plants was supplied with 1.0 mM Pi in half-strength Hoagland solution (control plants), and a second set (low-P plants) was supplied with 0.05 mM Pi. At the end of 2 weeks, the low-P plants were resupplied with 1.0 mM Pi. Low-P plants rapidly accumulated large amounts of Pi, and the photosynthesis rate increased to control values within 4 to 6 h. The rate of photosynthesis appeared to be controlled by ribulose-1,5-bisphosphate (RuBP); low P reduced photosynthesis and RuBP levels, and P resupply increased photosynthesis and RuBP in a manner parallel with time. Low-P treatment reduced adenylate levels substantially but not nicotinamide nucleotides; adenylate levels recovered to control values over 3 to 6 h. With low P, more photosynthate is allocated to non-P carbon compounds (e.g. starch, sucrose) than to sugar phosphates. When P is resupplied, sugar phosphates increase as starch and sucrose pools decrease; this increase in leaf (chloroplast) sugar phosphates was most likely responsible for the increases in RuBP and photosynthesis and may have increased adenylate levels (through enhanced levels of ribose-5-phosphate).