Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data

Maize is a major staple food crop in southern Africa and stress tolerant improved varieties have the potential to increase productivity, enhance livelihoods and reduce food insecurity. This study uses big data in refining the geospatial targeting of new drought-tolerant (DT) maize varieties in Malaw...

Full description

Bibliographic Details
Main Authors: Tesfaye, K., Sonder, Kai, Caims, J., Magorokosho, Cosmos, Tarekegn, A., Kassie, Girma T., Getaneh, F., Abdoulaye, Tahirou, Abate, T., Erenstein, Olaf
Format: Journal Article
Language:Inglés
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10568/76332
_version_ 1855526519232790528
author Tesfaye, K.
Sonder, Kai
Caims, J.
Magorokosho, Cosmos
Tarekegn, A.
Kassie, Girma T.
Getaneh, F.
Abdoulaye, Tahirou
Abate, T.
Erenstein, Olaf
author_browse Abate, T.
Abdoulaye, Tahirou
Caims, J.
Erenstein, Olaf
Getaneh, F.
Kassie, Girma T.
Magorokosho, Cosmos
Sonder, Kai
Tarekegn, A.
Tesfaye, K.
author_facet Tesfaye, K.
Sonder, Kai
Caims, J.
Magorokosho, Cosmos
Tarekegn, A.
Kassie, Girma T.
Getaneh, F.
Abdoulaye, Tahirou
Abate, T.
Erenstein, Olaf
author_sort Tesfaye, K.
collection Repository of Agricultural Research Outputs (CGSpace)
description Maize is a major staple food crop in southern Africa and stress tolerant improved varieties have the potential to increase productivity, enhance livelihoods and reduce food insecurity. This study uses big data in refining the geospatial targeting of new drought-tolerant (DT) maize varieties in Malawi, Mozambique, Zambia, and Zimbabwe. Results indicate that more than 1.0 million hectares (Mha) of maize in the study countries is exposed to a seasonal drought frequency exceeding 20% while an additional 1.6 Mha experience a drought occurrence of 10–20%. Spatial modeling indicates that new DT varieties could give a yield advantage of 5–40% over the commercial check variety across drought environments while crop management and input costs are kept equal. Results indicate a huge potential for DT maize seed production and marketing in the study countries. The study demonstrates how big data and analytical tools enhance the targeting and uptake of new agricultural technologies for boosting rural livelihoods, agribusiness development and food security in developing countries.
format Journal Article
id CGSpace76332
institution CGIAR Consortium
language Inglés
publishDate 2016
publishDateRange 2016
publishDateSort 2016
record_format dspace
spelling CGSpace763322025-11-11T10:18:52Z Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data Tesfaye, K. Sonder, Kai Caims, J. Magorokosho, Cosmos Tarekegn, A. Kassie, Girma T. Getaneh, F. Abdoulaye, Tahirou Abate, T. Erenstein, Olaf drought tolerance maize Maize is a major staple food crop in southern Africa and stress tolerant improved varieties have the potential to increase productivity, enhance livelihoods and reduce food insecurity. This study uses big data in refining the geospatial targeting of new drought-tolerant (DT) maize varieties in Malawi, Mozambique, Zambia, and Zimbabwe. Results indicate that more than 1.0 million hectares (Mha) of maize in the study countries is exposed to a seasonal drought frequency exceeding 20% while an additional 1.6 Mha experience a drought occurrence of 10–20%. Spatial modeling indicates that new DT varieties could give a yield advantage of 5–40% over the commercial check variety across drought environments while crop management and input costs are kept equal. Results indicate a huge potential for DT maize seed production and marketing in the study countries. The study demonstrates how big data and analytical tools enhance the targeting and uptake of new agricultural technologies for boosting rural livelihoods, agribusiness development and food security in developing countries. 2016 2016-08-04T07:45:50Z 2016-08-04T07:45:50Z Journal Article https://hdl.handle.net/10568/76332 en Open Access application/pdf Tesfaye, K., Sonder, K., Cairns, J., Magorokosho, C., Tarekegn, A., Kassie, G.T., ... & Erenstein, O. (2016). Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data. International Food and Agribusiness Management Review, 19(A), 1-18
spellingShingle drought tolerance
maize
Tesfaye, K.
Sonder, Kai
Caims, J.
Magorokosho, Cosmos
Tarekegn, A.
Kassie, Girma T.
Getaneh, F.
Abdoulaye, Tahirou
Abate, T.
Erenstein, Olaf
Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title_full Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title_fullStr Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title_full_unstemmed Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title_short Targeting drought-tolerant maize varieties in southern Africa: a geospatial crop modeling approach using big data
title_sort targeting drought tolerant maize varieties in southern africa a geospatial crop modeling approach using big data
topic drought tolerance
maize
url https://hdl.handle.net/10568/76332
work_keys_str_mv AT tesfayek targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT sonderkai targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT caimsj targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT magorokoshocosmos targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT tarekegna targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT kassiegirmat targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT getanehf targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT abdoulayetahirou targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT abatet targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata
AT erensteinolaf targetingdroughttolerantmaizevarietiesinsouthernafricaageospatialcropmodelingapproachusingbigdata