Assessing soil quality under different land cover types within shifting agriculture in South Cameroon

The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to invest...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngo-Mbogba, M., Yemefack, Martin, Nyeck, B.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://hdl.handle.net/10568/74467
_version_ 1855524759985455104
author Ngo-Mbogba, M.
Yemefack, Martin
Nyeck, B.
author_browse Ngo-Mbogba, M.
Nyeck, B.
Yemefack, Martin
author_facet Ngo-Mbogba, M.
Yemefack, Martin
Nyeck, B.
author_sort Ngo-Mbogba, M.
collection Repository of Agricultural Research Outputs (CGSpace)
description The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types.
format Journal Article
id CGSpace74467
institution CGIAR Consortium
language Inglés
publishDate 2015
publishDateRange 2015
publishDateSort 2015
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace744672024-08-27T10:35:55Z Assessing soil quality under different land cover types within shifting agriculture in South Cameroon Ngo-Mbogba, M. Yemefack, Martin Nyeck, B. fallow forests organic matter The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. The common agricultural practice in the humid tropical forest zone of Cameroon is shifting cultivation, which leads to a landscape mosaic system characterized by a diversity of land cover types. Our objective was to evaluate soil properties and soil quality under these land cover types and to investigate on their interrelationships. Topsoil samples (0–20 cm) were collected at the same time from 8 different land cover types (bare soil with burned vegetation biomass (FR1), bare soil with unburned vegetation biomass (FR), Chromolaena odorata fallow (JC), bush ligneous fallow (JR), secondary forest (SF), primary forest (FC), Gilbertiodendron dewevrei forest (FG), and raffia and Uapacca forest (RA)) and analysed for routine laboratory determinations. A soil quality index (SQI) computed based on soil chemical properties, analysis of variance and multiple comparison tests were used to compare soils from different land cover types. Principal component analysis (PCA) was used to select the most appropriate indicators that control soil quality. Several soil properties showed high to very high coefficient of variation within the land cover types. Organic matter was significantly high under forested land cover types (FC, FG, RA) and under bare soil with burned vegetation (FR1). Soil quality differs significantly (p = 0.000) from one land cover to another and shows the following ranking: SQI_FR1 SQI_FG > SQI_RA > SQI_FR > SQI_FC > SQI_JC > SQI_FS > SQI_JR. Organic matter (OM), available P, calcium (Ca), and pHw combined, accounted for 88.5% of the variation of soil quality. The soil quality appeared to be highly influenced by ashes from burned vegetation biomass which temporally enriches soils with nutrient elements and by the organic matter supplied by forested land cover types. 2015-07 2016-05-25T11:59:58Z 2016-05-25T11:59:58Z Journal Article https://hdl.handle.net/10568/74467 en Limited Access Elsevier Ngo-Mbogba, M., Yemefack, M., & Nyeck, B. (2015). Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil and Tillage Research, 150, 124-131.
spellingShingle fallow
forests
organic matter
Ngo-Mbogba, M.
Yemefack, Martin
Nyeck, B.
Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title_full Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title_fullStr Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title_full_unstemmed Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title_short Assessing soil quality under different land cover types within shifting agriculture in South Cameroon
title_sort assessing soil quality under different land cover types within shifting agriculture in south cameroon
topic fallow
forests
organic matter
url https://hdl.handle.net/10568/74467
work_keys_str_mv AT ngombogbam assessingsoilqualityunderdifferentlandcovertypeswithinshiftingagricultureinsouthcameroon
AT yemefackmartin assessingsoilqualityunderdifferentlandcovertypeswithinshiftingagricultureinsouthcameroon
AT nyeckb assessingsoilqualityunderdifferentlandcovertypeswithinshiftingagricultureinsouthcameroon