EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis

Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions a...

Full description

Bibliographic Details
Main Authors: Pulido Tamayo, Sergio, Duitama, Jorge, Marchal, Kathleen
Format: Journal Article
Language:Inglés
Published: Oxford University Press 2016
Subjects:
Online Access:https://hdl.handle.net/10568/73215
_version_ 1855542023239499776
author Pulido Tamayo, Sergio
Duitama, Jorge
Marchal, Kathleen
author_browse Duitama, Jorge
Marchal, Kathleen
Pulido Tamayo, Sergio
author_facet Pulido Tamayo, Sergio
Duitama, Jorge
Marchal, Kathleen
author_sort Pulido Tamayo, Sergio
collection Repository of Agricultural Research Outputs (CGSpace)
description Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/.
format Journal Article
id CGSpace73215
institution CGIAR Consortium
language Inglés
publishDate 2016
publishDateRange 2016
publishDateSort 2016
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace732152025-03-13T09:45:48Z EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis Pulido Tamayo, Sergio Duitama, Jorge Marchal, Kathleen quantitative trait loci genetic markers segregation computer applications data analysis bioinformatics statistical methods database phenotypes loci de rasgos cuantitativos marcadores genéticos segregación aplicaciones del ordenador análisis de datos bioinformática métodos estadísticos fenotipos Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/. 2016-07-08 2016-04-26T13:33:20Z 2016-04-26T13:33:20Z Journal Article https://hdl.handle.net/10568/73215 en Open Access Oxford University Press Pulido Tamayo, Sergio; Duitama, Jorge; Marchal, Kathleen. 2016. EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis . Nucleic Acids Research 44(w1):w142-w146.
spellingShingle quantitative trait loci
genetic markers
segregation
computer applications
data analysis
bioinformatics
statistical methods
database
phenotypes
loci de rasgos cuantitativos
marcadores genéticos
segregación
aplicaciones del ordenador
análisis de datos
bioinformática
métodos estadísticos
fenotipos
Pulido Tamayo, Sergio
Duitama, Jorge
Marchal, Kathleen
EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title_full EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title_fullStr EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title_full_unstemmed EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title_short EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis
title_sort explora web linkage analysis of quantitative trait loci using bulk segregant analysis
topic quantitative trait loci
genetic markers
segregation
computer applications
data analysis
bioinformatics
statistical methods
database
phenotypes
loci de rasgos cuantitativos
marcadores genéticos
segregación
aplicaciones del ordenador
análisis de datos
bioinformática
métodos estadísticos
fenotipos
url https://hdl.handle.net/10568/73215
work_keys_str_mv AT pulidotamayosergio exploraweblinkageanalysisofquantitativetraitlociusingbulksegregantanalysis
AT duitamajorge exploraweblinkageanalysisofquantitativetraitlociusingbulksegregantanalysis
AT marchalkathleen exploraweblinkageanalysisofquantitativetraitlociusingbulksegregantanalysis