Effect of excess water in an oxisol on ammonium, nitrate, iron and manganese availability and nutrient uptake of two tropical forage species

A glasshouse experiment was conducted to determine how reduction conditions would affect plant nutrient availability and uptake in a red-yellow latosol (Acrustox). Soil analysis showed that the most important changes were a marked increase in extractable iron and an inhibition of nitrification. The...

Full description

Bibliographic Details
Main Authors: Couto, W., Sanzonowics, C, Leite, GG
Format: Journal Article
Language:Inglés
Published: Springer 1983
Subjects:
Online Access:https://hdl.handle.net/10568/43374
Description
Summary:A glasshouse experiment was conducted to determine how reduction conditions would affect plant nutrient availability and uptake in a red-yellow latosol (Acrustox). Soil analysis showed that the most important changes were a marked increase in extractable iron and an inhibition of nitrification. The grass andropogon (Andropogon gayanus Kunth var.bisquamulatus (Hoechst) Hack) and the legume stylo (Stylosanthes capitata (Vog)) responded differently to reducing conditions.Andropogon showed low P, Ca, Mg, Fe and Mn content in the shoots but an intense coating of oxidized iron was observed on the surface of roots. Stylo plants, on the other hand, showed no iron deposition on the root surfaces but a high iron content in the shoots. No decreased P, Ca or Mg content was observed in this case. It was concluded that in water saturated soil, reduction took place and plant performance was affected not only by restricted root development but by preventing P, Ca and Mg uptake in andropogon and increasing Fe uptake in stylo plants. It is suggested that restricted P, Ca and Mg uptake by andropogen would be the result of iron deposition on root surfaces.