Genetic advances in adapting rice to a rapidly changing climate
Rice, with its wide geographic distribution extending from 50°N to 35°S, is expected to be the most vulnerable cultivated crop to future changing climates. Among the different abiotic stresses, extreme temperatures coinciding with critical developmental stages, increasingly frequent floods and droug...
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Wiley
2012
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/41940 |
| _version_ | 1855533235540328448 |
|---|---|
| author | Jagadish, Krishna S.V. Septiningsih, E.M. Kohli A Thomson, M.J. Ye C Redoña E Kumar, Arvind Gregorio, G.B. Wassmann, Reiner Ismail, A.M. Singh, RK |
| author_browse | Gregorio, G.B. Ismail, A.M. Jagadish, Krishna S.V. Kohli A Kumar, Arvind Redoña E Septiningsih, E.M. Singh, RK Thomson, M.J. Wassmann, Reiner Ye C |
| author_facet | Jagadish, Krishna S.V. Septiningsih, E.M. Kohli A Thomson, M.J. Ye C Redoña E Kumar, Arvind Gregorio, G.B. Wassmann, Reiner Ismail, A.M. Singh, RK |
| author_sort | Jagadish, Krishna S.V. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Rice, with its wide geographic distribution extending from 50°N to 35°S, is expected to be the most vulnerable cultivated crop to future changing climates. Among the different abiotic stresses, extreme temperatures coinciding with critical developmental stages, increasingly frequent floods and drought spells, and worsening sea water inundation are some of the major threats to sustainable rice productivity. Following the successful implementation of molecular marker-assisted backcrossing to introgress large-effect QTL for submergence tolerance in rice mega varieties, rice breeding for drought, salinity and, recently, heat tolerance is employing the same approach. Although tolerance for combined submergence and salinity has been achieved, developing rice varieties with multiple tolerance for other abiotic and biotic stresses and finding the appropriate agronomic package to exploit their performance remain a challenge. The major bottleneck is the lack of unidentified large-effect QTL for other abiotic stresses that are strongly influenced by genotype × environment (G × E) interaction. Rapid advances in the use of molecular tools, including a plethora of SNP markers, are expected to facilitate the development of major abiotic stress-tolerant rice. In response to the actual farmer field situation, progress achieved in understanding and developing independent abiotic stress tolerance is being exploited to combine tolerances (for example, heat and drought; salinity and submergence) to address emerging environmental problems across a wide range of rice ecosystems. |
| format | Journal Article |
| id | CGSpace41940 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2012 |
| publishDateRange | 2012 |
| publishDateSort | 2012 |
| publisher | Wiley |
| publisherStr | Wiley |
| record_format | dspace |
| spelling | CGSpace419402024-06-26T09:37:25Z Genetic advances in adapting rice to a rapidly changing climate Jagadish, Krishna S.V. Septiningsih, E.M. Kohli A Thomson, M.J. Ye C Redoña E Kumar, Arvind Gregorio, G.B. Wassmann, Reiner Ismail, A.M. Singh, RK agriculture climate rice Rice, with its wide geographic distribution extending from 50°N to 35°S, is expected to be the most vulnerable cultivated crop to future changing climates. Among the different abiotic stresses, extreme temperatures coinciding with critical developmental stages, increasingly frequent floods and drought spells, and worsening sea water inundation are some of the major threats to sustainable rice productivity. Following the successful implementation of molecular marker-assisted backcrossing to introgress large-effect QTL for submergence tolerance in rice mega varieties, rice breeding for drought, salinity and, recently, heat tolerance is employing the same approach. Although tolerance for combined submergence and salinity has been achieved, developing rice varieties with multiple tolerance for other abiotic and biotic stresses and finding the appropriate agronomic package to exploit their performance remain a challenge. The major bottleneck is the lack of unidentified large-effect QTL for other abiotic stresses that are strongly influenced by genotype × environment (G × E) interaction. Rapid advances in the use of molecular tools, including a plethora of SNP markers, are expected to facilitate the development of major abiotic stress-tolerant rice. In response to the actual farmer field situation, progress achieved in understanding and developing independent abiotic stress tolerance is being exploited to combine tolerances (for example, heat and drought; salinity and submergence) to address emerging environmental problems across a wide range of rice ecosystems. 2012-10 2014-08-15T12:13:11Z 2014-08-15T12:13:11Z Journal Article https://hdl.handle.net/10568/41940 en Limited Access Wiley Jagadish SVK, Septiningsih EM, Kohli A, Thomson MJ, Ye C, Redoña E, Kumar A, Gregorio GB, Wassmann R, Ismail AM, Singh RK. 2012. Genetic advances in adapting rice to a rapidly changing climate. Journal of Agronomy and Crop Science 198(5):360-373. |
| spellingShingle | agriculture climate rice Jagadish, Krishna S.V. Septiningsih, E.M. Kohli A Thomson, M.J. Ye C Redoña E Kumar, Arvind Gregorio, G.B. Wassmann, Reiner Ismail, A.M. Singh, RK Genetic advances in adapting rice to a rapidly changing climate |
| title | Genetic advances in adapting rice to a rapidly changing climate |
| title_full | Genetic advances in adapting rice to a rapidly changing climate |
| title_fullStr | Genetic advances in adapting rice to a rapidly changing climate |
| title_full_unstemmed | Genetic advances in adapting rice to a rapidly changing climate |
| title_short | Genetic advances in adapting rice to a rapidly changing climate |
| title_sort | genetic advances in adapting rice to a rapidly changing climate |
| topic | agriculture climate rice |
| url | https://hdl.handle.net/10568/41940 |
| work_keys_str_mv | AT jagadishkrishnasv geneticadvancesinadaptingricetoarapidlychangingclimate AT septiningsihem geneticadvancesinadaptingricetoarapidlychangingclimate AT kohlia geneticadvancesinadaptingricetoarapidlychangingclimate AT thomsonmj geneticadvancesinadaptingricetoarapidlychangingclimate AT yec geneticadvancesinadaptingricetoarapidlychangingclimate AT redonae geneticadvancesinadaptingricetoarapidlychangingclimate AT kumararvind geneticadvancesinadaptingricetoarapidlychangingclimate AT gregoriogb geneticadvancesinadaptingricetoarapidlychangingclimate AT wassmannreiner geneticadvancesinadaptingricetoarapidlychangingclimate AT ismailam geneticadvancesinadaptingricetoarapidlychangingclimate AT singhrk geneticadvancesinadaptingricetoarapidlychangingclimate |