Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems
Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist wi...
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Elsevier
2012
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/41787 |
| _version_ | 1855537069121601536 |
|---|---|
| author | Kizito, Fred Dragila, M.I. Sene, M. Brooks, J.R. Meinzer, F.C. Diedhiou, I. Diouf, M. Lufafa, A. Dick, R.P. Selker, J. Cuenca, R. |
| author_browse | Brooks, J.R. Cuenca, R. Dick, R.P. Diedhiou, I. Diouf, M. Dragila, M.I. Kizito, Fred Lufafa, A. Meinzer, F.C. Selker, J. Sene, M. |
| author_facet | Kizito, Fred Dragila, M.I. Sene, M. Brooks, J.R. Meinzer, F.C. Diedhiou, I. Diouf, M. Lufafa, A. Dick, R.P. Selker, J. Cuenca, R. |
| author_sort | Kizito, Fred |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in Sahelian agro-ecosystems. Real-time measurements were conducted for soil water content, soil water potential and microclimate variables notably; air temperature, relative humidity, wind speed, precipitation and solar irradiance. Additionally, sap flow measurements were conducted in shrub roots using the thermal dissipation technique on intact and coppiced shrubs. Monthly predawn leaf water potential was measured using a portable pressure chamber. Soil water potential (Js) at the 20 cm depth declined significantly during the dry season with diel changes in Js of 0.6 to 1.1 MPa. These variations were attributed to passive water release from shrub roots resulting in overnight rewetting of drier upper soil layers. Sap flow measurements on tap and lateral shrub roots indicated daily reversals in the direction of flow. During the peak of the dry season, both positive (toward shrub) and negative (toward soil) flows were observed in lateral shrub roots with sap flow in the lateral roots frequently negative at night and rapidly becoming positive soon after sunrise. The negative sap flow at night in superficial lateral roots and the periodic positive flow in the descending tap roots were indicative of hydraulic redistribution. Hydraulic redistribution may be an important mechanism for drought stress avoidance while maintaining plant physiological functions in both shrubs and neighboring annuals in water-limited environments. |
| format | Journal Article |
| id | CGSpace41787 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2012 |
| publishDateRange | 2012 |
| publishDateSort | 2012 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace417872025-06-17T08:24:13Z Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems Kizito, Fred Dragila, M.I. Sene, M. Brooks, J.R. Meinzer, F.C. Diedhiou, I. Diouf, M. Lufafa, A. Dick, R.P. Selker, J. Cuenca, R. agroecosystems soil water content soil moisture food crops microclimate Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in Sahelian agro-ecosystems. Real-time measurements were conducted for soil water content, soil water potential and microclimate variables notably; air temperature, relative humidity, wind speed, precipitation and solar irradiance. Additionally, sap flow measurements were conducted in shrub roots using the thermal dissipation technique on intact and coppiced shrubs. Monthly predawn leaf water potential was measured using a portable pressure chamber. Soil water potential (Js) at the 20 cm depth declined significantly during the dry season with diel changes in Js of 0.6 to 1.1 MPa. These variations were attributed to passive water release from shrub roots resulting in overnight rewetting of drier upper soil layers. Sap flow measurements on tap and lateral shrub roots indicated daily reversals in the direction of flow. During the peak of the dry season, both positive (toward shrub) and negative (toward soil) flows were observed in lateral shrub roots with sap flow in the lateral roots frequently negative at night and rapidly becoming positive soon after sunrise. The negative sap flow at night in superficial lateral roots and the periodic positive flow in the descending tap roots were indicative of hydraulic redistribution. Hydraulic redistribution may be an important mechanism for drought stress avoidance while maintaining plant physiological functions in both shrubs and neighboring annuals in water-limited environments. 2012-08 2014-07-25T11:40:44Z 2014-07-25T11:40:44Z Journal Article https://hdl.handle.net/10568/41787 en Limited Access Elsevier Kizito, Fred; Dragila, M. I.; Sene, M.; Brooks, J. R.; Meinzer, F. C.; Diedhiou, I.; Diouf, M.; Lufafa, A.; Dick, R. P.; Selker, J.; Cuenca, R. 2012. Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems. Journal of Arid Environments, 83:69-77. doi: https://doi.org/10.1016/j.jaridenv.2012.03.010 |
| spellingShingle | agroecosystems soil water content soil moisture food crops microclimate Kizito, Fred Dragila, M.I. Sene, M. Brooks, J.R. Meinzer, F.C. Diedhiou, I. Diouf, M. Lufafa, A. Dick, R.P. Selker, J. Cuenca, R. Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title | Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title_full | Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title_fullStr | Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title_full_unstemmed | Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title_short | Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems |
| title_sort | hydraulic redistribution by two semi arid shrub species implications for sahelian agro ecosystems |
| topic | agroecosystems soil water content soil moisture food crops microclimate |
| url | https://hdl.handle.net/10568/41787 |
| work_keys_str_mv | AT kizitofred hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT dragilami hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT senem hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT brooksjr hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT meinzerfc hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT diedhioui hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT dioufm hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT lufafaa hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT dickrp hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT selkerj hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems AT cuencar hydraulicredistributionbytwosemiaridshrubspeciesimplicationsforsahelianagroecosystems |