Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are th...
| Autores principales: | , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2014
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/41668 |
| _version_ | 1855525571914629120 |
|---|---|
| author | Gilbert, M. Golding, N. Zhou, H. Wint, G.R.W. Robinson, Timothy P. Tatem, A.J. Lai, S. Zhou, S. Jiang, H. Guo, D. Huang, Z. Messina, J.P. Xiao, X. Linard, C. Boeckel, Thomas P. van Martin, V. Bhatt, S. Gething, P.W. Farrar, J.J. Hay, S.I. Yu, H. |
| author_browse | Bhatt, S. Boeckel, Thomas P. van Farrar, J.J. Gething, P.W. Gilbert, M. Golding, N. Guo, D. Hay, S.I. Huang, Z. Jiang, H. Lai, S. Linard, C. Martin, V. Messina, J.P. Robinson, Timothy P. Tatem, A.J. Wint, G.R.W. Xiao, X. Yu, H. Zhou, H. Zhou, S. |
| author_facet | Gilbert, M. Golding, N. Zhou, H. Wint, G.R.W. Robinson, Timothy P. Tatem, A.J. Lai, S. Zhou, S. Jiang, H. Guo, D. Huang, Z. Messina, J.P. Xiao, X. Linard, C. Boeckel, Thomas P. van Martin, V. Bhatt, S. Gething, P.W. Farrar, J.J. Hay, S.I. Yu, H. |
| author_sort | Gilbert, M. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. |
| format | Journal Article |
| id | CGSpace41668 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2014 |
| publishDateRange | 2014 |
| publishDateSort | 2014 |
| publisher | Springer |
| publisherStr | Springer |
| record_format | dspace |
| spelling | CGSpace416682024-05-01T08:17:26Z Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia Gilbert, M. Golding, N. Zhou, H. Wint, G.R.W. Robinson, Timothy P. Tatem, A.J. Lai, S. Zhou, S. Jiang, H. Guo, D. Huang, Z. Messina, J.P. Xiao, X. Linard, C. Boeckel, Thomas P. van Martin, V. Bhatt, S. Gething, P.W. Farrar, J.J. Hay, S.I. Yu, H. animal diseases avian influenza virus poultry marketing livestock Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. 2014-06-17 2014-07-02T08:06:22Z 2014-07-02T08:06:22Z Journal Article https://hdl.handle.net/10568/41668 en Open Access Springer Gilbert, M., Golding, N., Zhou, H., Wint, G.R.W., Robinson, T.P., Tatem, A.J., Lai, S., Zhou, S., Jiang, H., Guo, D., Huang, Z., Messina, J.P., Xiao, X., Linard, C., Boeckel, T.P. van, Martin, V., Bhatt, S., Gething, P.W., Farrar, J.J., Hay, S.I. and Yu, H. 2014. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications 5: 4116. |
| spellingShingle | animal diseases avian influenza virus poultry marketing livestock Gilbert, M. Golding, N. Zhou, H. Wint, G.R.W. Robinson, Timothy P. Tatem, A.J. Lai, S. Zhou, S. Jiang, H. Guo, D. Huang, Z. Messina, J.P. Xiao, X. Linard, C. Boeckel, Thomas P. van Martin, V. Bhatt, S. Gething, P.W. Farrar, J.J. Hay, S.I. Yu, H. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title_full | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title_fullStr | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title_full_unstemmed | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title_short | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia |
| title_sort | predicting the risk of avian influenza a h7n9 infection in live poultry markets across asia |
| topic | animal diseases avian influenza virus poultry marketing livestock |
| url | https://hdl.handle.net/10568/41668 |
| work_keys_str_mv | AT gilbertm predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT goldingn predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT zhouh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT wintgrw predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT robinsontimothyp predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT tatemaj predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT lais predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT zhous predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT jiangh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT guod predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT huangz predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT messinajp predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT xiaox predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT linardc predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT boeckelthomaspvan predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT martinv predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT bhatts predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT gethingpw predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT farrarjj predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT haysi predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia AT yuh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia |