Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia

Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are th...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilbert, M., Golding, N., Zhou, H., Wint, G.R.W., Robinson, Timothy P., Tatem, A.J., Lai, S., Zhou, S., Jiang, H., Guo, D., Huang, Z., Messina, J.P., Xiao, X., Linard, C., Boeckel, Thomas P. van, Martin, V., Bhatt, S., Gething, P.W., Farrar, J.J., Hay, S.I., Yu, H.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2014
Materias:
Acceso en línea:https://hdl.handle.net/10568/41668
_version_ 1855525571914629120
author Gilbert, M.
Golding, N.
Zhou, H.
Wint, G.R.W.
Robinson, Timothy P.
Tatem, A.J.
Lai, S.
Zhou, S.
Jiang, H.
Guo, D.
Huang, Z.
Messina, J.P.
Xiao, X.
Linard, C.
Boeckel, Thomas P. van
Martin, V.
Bhatt, S.
Gething, P.W.
Farrar, J.J.
Hay, S.I.
Yu, H.
author_browse Bhatt, S.
Boeckel, Thomas P. van
Farrar, J.J.
Gething, P.W.
Gilbert, M.
Golding, N.
Guo, D.
Hay, S.I.
Huang, Z.
Jiang, H.
Lai, S.
Linard, C.
Martin, V.
Messina, J.P.
Robinson, Timothy P.
Tatem, A.J.
Wint, G.R.W.
Xiao, X.
Yu, H.
Zhou, H.
Zhou, S.
author_facet Gilbert, M.
Golding, N.
Zhou, H.
Wint, G.R.W.
Robinson, Timothy P.
Tatem, A.J.
Lai, S.
Zhou, S.
Jiang, H.
Guo, D.
Huang, Z.
Messina, J.P.
Xiao, X.
Linard, C.
Boeckel, Thomas P. van
Martin, V.
Bhatt, S.
Gething, P.W.
Farrar, J.J.
Hay, S.I.
Yu, H.
author_sort Gilbert, M.
collection Repository of Agricultural Research Outputs (CGSpace)
description Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.
format Journal Article
id CGSpace41668
institution CGIAR Consortium
language Inglés
publishDate 2014
publishDateRange 2014
publishDateSort 2014
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace416682024-05-01T08:17:26Z Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia Gilbert, M. Golding, N. Zhou, H. Wint, G.R.W. Robinson, Timothy P. Tatem, A.J. Lai, S. Zhou, S. Jiang, H. Guo, D. Huang, Z. Messina, J.P. Xiao, X. Linard, C. Boeckel, Thomas P. van Martin, V. Bhatt, S. Gething, P.W. Farrar, J.J. Hay, S.I. Yu, H. animal diseases avian influenza virus poultry marketing livestock Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. 2014-06-17 2014-07-02T08:06:22Z 2014-07-02T08:06:22Z Journal Article https://hdl.handle.net/10568/41668 en Open Access Springer Gilbert, M., Golding, N., Zhou, H., Wint, G.R.W., Robinson, T.P., Tatem, A.J., Lai, S., Zhou, S., Jiang, H., Guo, D., Huang, Z., Messina, J.P., Xiao, X., Linard, C., Boeckel, T.P. van, Martin, V., Bhatt, S., Gething, P.W., Farrar, J.J., Hay, S.I. and Yu, H. 2014. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications 5: 4116.
spellingShingle animal diseases
avian influenza virus
poultry
marketing
livestock
Gilbert, M.
Golding, N.
Zhou, H.
Wint, G.R.W.
Robinson, Timothy P.
Tatem, A.J.
Lai, S.
Zhou, S.
Jiang, H.
Guo, D.
Huang, Z.
Messina, J.P.
Xiao, X.
Linard, C.
Boeckel, Thomas P. van
Martin, V.
Bhatt, S.
Gething, P.W.
Farrar, J.J.
Hay, S.I.
Yu, H.
Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title_full Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title_fullStr Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title_full_unstemmed Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title_short Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia
title_sort predicting the risk of avian influenza a h7n9 infection in live poultry markets across asia
topic animal diseases
avian influenza virus
poultry
marketing
livestock
url https://hdl.handle.net/10568/41668
work_keys_str_mv AT gilbertm predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT goldingn predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT zhouh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT wintgrw predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT robinsontimothyp predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT tatemaj predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT lais predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT zhous predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT jiangh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT guod predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT huangz predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT messinajp predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT xiaox predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT linardc predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT boeckelthomaspvan predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT martinv predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT bhatts predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT gethingpw predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT farrarjj predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT haysi predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia
AT yuh predictingtheriskofavianinfluenzaah7n9infectioninlivepoultrymarketsacrossasia