Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction

To improve the prediction of crop yields at an aggregate scale, we developed a data assimilation-crop modeling framework that incorporates remotely sensed soil moisture and leaf area index (LAI) into a crop model using sequential data assimilation. The core of the framework is an Ensemble Kalman Fil...

Descripción completa

Detalles Bibliográficos
Autores principales: Ines, Amor V.M., Das, NN, Hansen, James, Njoku, EG
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://hdl.handle.net/10568/33838

Ejemplares similares: Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction