Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya

Rift Valley Fever (RVF) is an arthropod-borne viral zoonosis with a potential global threat to domestic animals and humans. Climate variability is recognized as one of the major drivers contributing RVF epidemics and epizootics that have been closely linked to cyclic occurrence of the warm phase of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nanyingi, M.O., Muchemi, G.M., Kiama, S.G., Thumbi, Samuel M., Bett, Bernard K.
Formato: Ponencia
Lenguaje:Inglés
Publicado: University of Nairobi 2013
Materias:
Acceso en línea:https://hdl.handle.net/10568/33786
_version_ 1855527931372109824
author Nanyingi, M.O.
Muchemi, G.M.
Kiama, S.G.
Thumbi, Samuel M.
Bett, Bernard K.
author_browse Bett, Bernard K.
Kiama, S.G.
Muchemi, G.M.
Nanyingi, M.O.
Thumbi, Samuel M.
author_facet Nanyingi, M.O.
Muchemi, G.M.
Kiama, S.G.
Thumbi, Samuel M.
Bett, Bernard K.
author_sort Nanyingi, M.O.
collection Repository of Agricultural Research Outputs (CGSpace)
description Rift Valley Fever (RVF) is an arthropod-borne viral zoonosis with a potential global threat to domestic animals and humans. Climate variability is recognized as one of the major drivers contributing RVF epidemics and epizootics that have been closely linked to cyclic occurrence of the warm phase of the El Niño southern oscillation (ENSO) phenomenon. Using retrospective reanalysis and cross sectional participatory approaches we evaluate the impacts of climate change on pastoral communities and outline their roles in community based early warning systems for RVF. We compare the spatiotemporal correlation of normalized difference vegetation index (NDVI) and Rainfall Estimate Differences as surrogate predictors of RVF outbreaks in Garissa over the past decade. A bivariate regression model to provide a month-ahead lead-time for earlier prediction of RVF is described. We also explore the recent RVF outbreaks linkage to other environmental conditions using long-term sentinel data collected on the field. The results indicate a significant correlation between elevated rainfall and NDVI (> 0.43) anomalies with recent RVF epidemics (P < 0.5). Persistent elevated rainfall and NDVI suggest that there is a likelihood of another RVF outbreak due to enhance vector competence. Given the nearly linear relationship between rainfall and NDVI it is thus possible to utilize these factors to examine and predict spatially and temporally RVF epidemics for effective surveillance with limited resources. This small-scale focal study will contribute to various existing predictive tools and present a good opportunity for preparedness and mitigation of RVF by local, national and international organizations involved in the prevention and control of RVF.
format Ponencia
id CGSpace33786
institution CGIAR Consortium
language Inglés
publishDate 2013
publishDateRange 2013
publishDateSort 2013
publisher University of Nairobi
publisherStr University of Nairobi
record_format dspace
spelling CGSpace337862025-11-04T19:53:47Z Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya Nanyingi, M.O. Muchemi, G.M. Kiama, S.G. Thumbi, Samuel M. Bett, Bernard K. animal diseases epidemiology Rift Valley Fever (RVF) is an arthropod-borne viral zoonosis with a potential global threat to domestic animals and humans. Climate variability is recognized as one of the major drivers contributing RVF epidemics and epizootics that have been closely linked to cyclic occurrence of the warm phase of the El Niño southern oscillation (ENSO) phenomenon. Using retrospective reanalysis and cross sectional participatory approaches we evaluate the impacts of climate change on pastoral communities and outline their roles in community based early warning systems for RVF. We compare the spatiotemporal correlation of normalized difference vegetation index (NDVI) and Rainfall Estimate Differences as surrogate predictors of RVF outbreaks in Garissa over the past decade. A bivariate regression model to provide a month-ahead lead-time for earlier prediction of RVF is described. We also explore the recent RVF outbreaks linkage to other environmental conditions using long-term sentinel data collected on the field. The results indicate a significant correlation between elevated rainfall and NDVI (> 0.43) anomalies with recent RVF epidemics (P < 0.5). Persistent elevated rainfall and NDVI suggest that there is a likelihood of another RVF outbreak due to enhance vector competence. Given the nearly linear relationship between rainfall and NDVI it is thus possible to utilize these factors to examine and predict spatially and temporally RVF epidemics for effective surveillance with limited resources. This small-scale focal study will contribute to various existing predictive tools and present a good opportunity for preparedness and mitigation of RVF by local, national and international organizations involved in the prevention and control of RVF. 2013-04-24 2013-10-10T06:31:37Z 2013-10-10T06:31:37Z Presentation https://hdl.handle.net/10568/33786 en Open Access application/pdf University of Nairobi Nanyingi, M.O., Muchemi, G.M., Kiama, S.G., Thumbi, S.M. and Bett, B. 2013. Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya. Presented at the 47th annual scientific conference of the Kenya Veterinary Association, Mombasa, Kenya, 24-27 April 2013. Nairobi, Kenya: University of Nairobi.
spellingShingle animal diseases
epidemiology
Nanyingi, M.O.
Muchemi, G.M.
Kiama, S.G.
Thumbi, Samuel M.
Bett, Bernard K.
Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title_full Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title_fullStr Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title_full_unstemmed Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title_short Perspectives of predictive epidemiology and early warning systems for Rift Valley fever in Garissa, Kenya
title_sort perspectives of predictive epidemiology and early warning systems for rift valley fever in garissa kenya
topic animal diseases
epidemiology
url https://hdl.handle.net/10568/33786
work_keys_str_mv AT nanyingimo perspectivesofpredictiveepidemiologyandearlywarningsystemsforriftvalleyfeveringarissakenya
AT muchemigm perspectivesofpredictiveepidemiologyandearlywarningsystemsforriftvalleyfeveringarissakenya
AT kiamasg perspectivesofpredictiveepidemiologyandearlywarningsystemsforriftvalleyfeveringarissakenya
AT thumbisamuelm perspectivesofpredictiveepidemiologyandearlywarningsystemsforriftvalleyfeveringarissakenya
AT bettbernardk perspectivesofpredictiveepidemiologyandearlywarningsystemsforriftvalleyfeveringarissakenya