Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems
Human activity has had the single largest influence on the global nitrogen (N) cycle by introducing unprecedented amounts of reactive-N into ecosystems. A major portion of this reactive-N, applied as fertilizer to crops, leaks into the environment with cascading negative effects on ecosystem functio...
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Book Chapter |
| Language: | Inglés |
| Published: |
Elsevier
2012
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/33528 |
| _version_ | 1855540776298086400 |
|---|---|
| author | Subbaraoa, Guntur V. Sahrawat, Kanwar Lal Nakahara, K. Ishikawa, T. Kudo, N. Kishii, M. Rao, Idupulapati M. Hash, C.T. George, T.S. Rao, P.S. Nardi, P. Bonnett, D. Berry, W. Suenaga, K. Lata, Jean-Christophe |
| author_browse | Berry, W. Bonnett, D. George, T.S. Hash, C.T. Ishikawa, T. Kishii, M. Kudo, N. Lata, Jean-Christophe Nakahara, K. Nardi, P. Rao, Idupulapati M. Rao, P.S. Sahrawat, Kanwar Lal Subbaraoa, Guntur V. Suenaga, K. |
| author_facet | Subbaraoa, Guntur V. Sahrawat, Kanwar Lal Nakahara, K. Ishikawa, T. Kudo, N. Kishii, M. Rao, Idupulapati M. Hash, C.T. George, T.S. Rao, P.S. Nardi, P. Bonnett, D. Berry, W. Suenaga, K. Lata, Jean-Christophe |
| author_sort | Subbaraoa, Guntur V. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Human activity has had the single largest influence on the global nitrogen (N) cycle by introducing unprecedented amounts of reactive-N into ecosystems. A major portion of this reactive-N, applied as fertilizer to crops, leaks into the environment with cascading negative effects on ecosystem functions and contributes to global warming. Natural ecosystems use multiple pathways of the N-cycle to regulate the flow of this element. By contrast, the large amounts of N currently applied in agricultural systems cycle primarily through the nitrification process, a single inefficient route that allows much of the reactive-N to leak into the environment. The fact that present agricultural systems do not channel this reactive-N through alternate pathways is largely due to uncontrolled soil nitrifier activity, creating a rapid nitrifying soil environment. Regulating nitrification is therefore central to any strategy for improving nitrogen-use efficiency. Biological nitrification inhibition (BNI) is an active plant-mediated natural function, where nitrification inhibitors released from plant roots suppress soil-nitrifying activity, thereby forcing N into other pathways. This review illustrates the presence of detection methods for variation in physiological regulation of BNI-function in field crops and pasture grasses and analyzes the potential for its genetic manipulation. We present a conceptual framework utilizing a BNI-platform that integrates diverse crop science disciplines with ecological principles. Sustainable agriculture will require development of production systems that include new crop cultivars capable of controlling nitrification (i.e., high BNI-capacity) and improved agronomic practices to minimize leakage of reactive-N during the N-cycle, a critical requirement for increasing food production while avoiding environmental damage. |
| format | Book Chapter |
| id | CGSpace33528 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2012 |
| publishDateRange | 2012 |
| publishDateSort | 2012 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace335282024-04-25T06:01:50Z Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems Subbaraoa, Guntur V. Sahrawat, Kanwar Lal Nakahara, K. Ishikawa, T. Kudo, N. Kishii, M. Rao, Idupulapati M. Hash, C.T. George, T.S. Rao, P.S. Nardi, P. Bonnett, D. Berry, W. Suenaga, K. Lata, Jean-Christophe crops Human activity has had the single largest influence on the global nitrogen (N) cycle by introducing unprecedented amounts of reactive-N into ecosystems. A major portion of this reactive-N, applied as fertilizer to crops, leaks into the environment with cascading negative effects on ecosystem functions and contributes to global warming. Natural ecosystems use multiple pathways of the N-cycle to regulate the flow of this element. By contrast, the large amounts of N currently applied in agricultural systems cycle primarily through the nitrification process, a single inefficient route that allows much of the reactive-N to leak into the environment. The fact that present agricultural systems do not channel this reactive-N through alternate pathways is largely due to uncontrolled soil nitrifier activity, creating a rapid nitrifying soil environment. Regulating nitrification is therefore central to any strategy for improving nitrogen-use efficiency. Biological nitrification inhibition (BNI) is an active plant-mediated natural function, where nitrification inhibitors released from plant roots suppress soil-nitrifying activity, thereby forcing N into other pathways. This review illustrates the presence of detection methods for variation in physiological regulation of BNI-function in field crops and pasture grasses and analyzes the potential for its genetic manipulation. We present a conceptual framework utilizing a BNI-platform that integrates diverse crop science disciplines with ecological principles. Sustainable agriculture will require development of production systems that include new crop cultivars capable of controlling nitrification (i.e., high BNI-capacity) and improved agronomic practices to minimize leakage of reactive-N during the N-cycle, a critical requirement for increasing food production while avoiding environmental damage. 2012 2013-08-26T14:11:25Z 2013-08-26T14:11:25Z Book Chapter https://hdl.handle.net/10568/33528 en Limited Access Elsevier Subbarao, G.V., Sahrawat, K.L., Nakahara, K., Ishikawa, T., Kudo, N., Kishii, M., Rao, I.M., Hash, C.T., George, T.S., Rao, P.S., Nardi, P., Bonnett, D., Berry, W., Suenaga, K. and Lata, J.C. 2012. Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems. Advances in Agronomy 114: 249-302. |
| spellingShingle | crops Subbaraoa, Guntur V. Sahrawat, Kanwar Lal Nakahara, K. Ishikawa, T. Kudo, N. Kishii, M. Rao, Idupulapati M. Hash, C.T. George, T.S. Rao, P.S. Nardi, P. Bonnett, D. Berry, W. Suenaga, K. Lata, Jean-Christophe Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title | Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title_full | Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title_fullStr | Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title_full_unstemmed | Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title_short | Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems |
| title_sort | biological nitrification inhibition bni a novel strategy to regulate nitrification in agricultural systems |
| topic | crops |
| url | https://hdl.handle.net/10568/33528 |
| work_keys_str_mv | AT subbaraoagunturv biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT sahrawatkanwarlal biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT nakaharak biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT ishikawat biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT kudon biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT kishiim biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT raoidupulapatim biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT hashct biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT georgets biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT raops biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT nardip biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT bonnettd biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT berryw biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT suenagak biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems AT latajeanchristophe biologicalnitrificationinhibitionbnianovelstrategytoregulatenitrificationinagriculturalsystems |