Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin

High population pressure, inappropriate agricultural policies, improper land-use planning, over-dependency on agriculture as source of livelihood and extreme dependence on natural resources are inducing deforestation, overgrazing, expansion of agriculture to marginal lands and steep slopes, declin...

Descripción completa

Detalles Bibliográficos
Autores principales: Awulachew, Seleshi Bekele, Tenaw, Mequanint
Formato: Libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:https://hdl.handle.net/10568/21044
_version_ 1855534590607753216
author Awulachew, Seleshi Bekele
Tenaw, Mequanint
author_browse Awulachew, Seleshi Bekele
Tenaw, Mequanint
author_facet Awulachew, Seleshi Bekele
Tenaw, Mequanint
author_sort Awulachew, Seleshi Bekele
collection Repository of Agricultural Research Outputs (CGSpace)
description High population pressure, inappropriate agricultural policies, improper land-use planning, over-dependency on agriculture as source of livelihood and extreme dependence on natural resources are inducing deforestation, overgrazing, expansion of agriculture to marginal lands and steep slopes, declining agricultural productivity and resource-use conflicts in many parts of Blue Nile. Increased land degradation from poor agricultural practices and erosion results in increased siltation and the reduced water quality in the river basin. The rainfall, runoff and sediment are highly variable both in time and space. Poor water and land management upstream severely affect runoff characteristics and the quality of water reaching downstream. The result is a downward spiral of poverty and food insecurity for millions of people both within the upper catchment and downstream across international borders. Quantification of the erosion, sedimentation processes and evaluation of impacts of interventions are difficult tasks. This paper schematizes the Blue Nile Basin (BNB) at various spatial levels as micro watershed, watershed, sub-basin to basin. It is revealed that sediment in the river systems are temporally varying phenomenon and strongly related to the early onset of rainfall. The hydrographs of the systems shows that the peak of sediment reaches first followed by peak of rainfall and then runoff. Furthermore, the sediment cumulative curve shows that most of the sediment volume passes in the river in the first three months of the rainy season. The paper also considers a particular watershed to model runoff, sediment and impact of watershed intervention. The result shows that runoff can be reasonably simulated with calibration of R2=0.87 and validation of result of 0.82, and comparable sediment modelling results. The study also demonstrates, by undertaking spatial analysis using topographic, soil and land use parameters it is possible to identify the high sediment risk sub-watersheds. Impact of typical watershed intervention using various widths of vegetative filter and application on high erosion risk watersheds shows reduction of sediment yield from 52% to 74%
format Libro
id CGSpace21044
institution CGIAR Consortium
language Inglés
publishDate 2008
publishDateRange 2008
publishDateSort 2008
record_format dspace
spelling CGSpace210442025-11-12T07:32:39Z Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin Awulachew, Seleshi Bekele Tenaw, Mequanint High population pressure, inappropriate agricultural policies, improper land-use planning, over-dependency on agriculture as source of livelihood and extreme dependence on natural resources are inducing deforestation, overgrazing, expansion of agriculture to marginal lands and steep slopes, declining agricultural productivity and resource-use conflicts in many parts of Blue Nile. Increased land degradation from poor agricultural practices and erosion results in increased siltation and the reduced water quality in the river basin. The rainfall, runoff and sediment are highly variable both in time and space. Poor water and land management upstream severely affect runoff characteristics and the quality of water reaching downstream. The result is a downward spiral of poverty and food insecurity for millions of people both within the upper catchment and downstream across international borders. Quantification of the erosion, sedimentation processes and evaluation of impacts of interventions are difficult tasks. This paper schematizes the Blue Nile Basin (BNB) at various spatial levels as micro watershed, watershed, sub-basin to basin. It is revealed that sediment in the river systems are temporally varying phenomenon and strongly related to the early onset of rainfall. The hydrographs of the systems shows that the peak of sediment reaches first followed by peak of rainfall and then runoff. Furthermore, the sediment cumulative curve shows that most of the sediment volume passes in the river in the first three months of the rainy season. The paper also considers a particular watershed to model runoff, sediment and impact of watershed intervention. The result shows that runoff can be reasonably simulated with calibration of R2=0.87 and validation of result of 0.82, and comparable sediment modelling results. The study also demonstrates, by undertaking spatial analysis using topographic, soil and land use parameters it is possible to identify the high sediment risk sub-watersheds. Impact of typical watershed intervention using various widths of vegetative filter and application on high erosion risk watersheds shows reduction of sediment yield from 52% to 74% 2008 2012-06-07T09:12:31Z 2012-06-07T09:12:31Z Book https://hdl.handle.net/10568/21044 en Limited Access application/pdf Awulachew, Seleshi Bekele; Tenaw, M. 2008. Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin. Paper presented at the Challenge Program on Water and Food (CPWF) Workshop on Micro-Watershed to Basin Scale Adoption of SWC Technologies and Impacts, Tamale, Ghana, 22-25 September, 2008. 6p.
spellingShingle Awulachew, Seleshi Bekele
Tenaw, Mequanint
Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title_full Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title_fullStr Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title_full_unstemmed Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title_short Micro watershed to basin scale impacts of widespread adoption of watershed management interventions in Blue Nile Basin
title_sort micro watershed to basin scale impacts of widespread adoption of watershed management interventions in blue nile basin
url https://hdl.handle.net/10568/21044
work_keys_str_mv AT awulachewseleshibekele microwatershedtobasinscaleimpactsofwidespreadadoptionofwatershedmanagementinterventionsinbluenilebasin
AT tenawmequanint microwatershedtobasinscaleimpactsofwidespreadadoptionofwatershedmanagementinterventionsinbluenilebasin