AI-Powered Meta-Analysis Automation
AI-Powered Meta-Analysis Automation accelerates evidence synthesis in agriculture by automating the repetitive stages of a review while preserving methodological rigor. The workflow covers: search-term generation, LLM-assisted screening, tagging, keyword extraction, classification, and harmonization...
| Autores principales: | , , , |
|---|---|
| Formato: | Conjunto de datos |
| Lenguaje: | Inglés |
| Publicado: |
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/180145 |
Ejemplares similares: AI-Powered Meta-Analysis Automation
- ERA evidence synthesis & meta-analysis automation (ERAgriculture/AI-Powered-Meta-Analysis-Automation R-code GitHub)
- From principles to practice: Why ethical AI starts with data
- AI in qualitative research: Using large language models to code survey responses in native languages
- AI-powered location-specific fertilizer recommendation using data-driven machine and large language model (LLM) for maize and wheat in Ethiopia: genesis of TeroAI
- AgroTutor: Localised generative AI infrastructure for agri advisories
- Croppie: AI-powered information extraction from natural language