AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification

Vision2Biomass is an AI-driven approach for quantifying crop residue retention in paddy fields to support digital Monitoring, Reporting, and Verification (MRV) systems for agricultural carbon accounting. The probe addresses limitations of manual residue assessment, which is labor-intensive, subjecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sowjanya, Palle Sai, Patil, Mukund, Rupavatharam, Srikanth, Gogumalla, Pranuthi, Choudhari, Pushpajeet L., Dihudi, Munmun
Formato: Brochure
Lenguaje:Inglés
Publicado: International Crops Research Institute for the Semi-Arid Tropics 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/179446
_version_ 1855522443476598784
author Sowjanya, Palle Sai
Patil, Mukund
Rupavatharam, Srikanth
Gogumalla, Pranuthi
Choudhari, Pushpajeet L.
Dihudi, Munmun
author_browse Choudhari, Pushpajeet L.
Dihudi, Munmun
Gogumalla, Pranuthi
Patil, Mukund
Rupavatharam, Srikanth
Sowjanya, Palle Sai
author_facet Sowjanya, Palle Sai
Patil, Mukund
Rupavatharam, Srikanth
Gogumalla, Pranuthi
Choudhari, Pushpajeet L.
Dihudi, Munmun
author_sort Sowjanya, Palle Sai
collection Repository of Agricultural Research Outputs (CGSpace)
description Vision2Biomass is an AI-driven approach for quantifying crop residue retention in paddy fields to support digital Monitoring, Reporting, and Verification (MRV) systems for agricultural carbon accounting. The probe addresses limitations of manual residue assessment, which is labor-intensive, subjective, and difficult to scale. Using geo-tagged field photographs, computer vision models segment residue, soil, and vegetation at the pixel level and estimate residue retention categories. By combining image segmentation with deep feature extraction and classification, the system provides consistent, interpretable residue estimates that can be directly linked to carbon models. Vision2Biomass demonstrates the potential of scalable, image-based analytics for climate-smart agriculture and verifiable carbon mitigation.
format Brochure
id CGSpace179446
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher International Crops Research Institute for the Semi-Arid Tropics
publisherStr International Crops Research Institute for the Semi-Arid Tropics
record_format dspace
spelling CGSpace1794462026-01-07T02:05:41Z AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification Sowjanya, Palle Sai Patil, Mukund Rupavatharam, Srikanth Gogumalla, Pranuthi Choudhari, Pushpajeet L. Dihudi, Munmun crop residues carbon sequestration carbon mitigation crop residue digital solutions Vision2Biomass is an AI-driven approach for quantifying crop residue retention in paddy fields to support digital Monitoring, Reporting, and Verification (MRV) systems for agricultural carbon accounting. The probe addresses limitations of manual residue assessment, which is labor-intensive, subjective, and difficult to scale. Using geo-tagged field photographs, computer vision models segment residue, soil, and vegetation at the pixel level and estimate residue retention categories. By combining image segmentation with deep feature extraction and classification, the system provides consistent, interpretable residue estimates that can be directly linked to carbon models. Vision2Biomass demonstrates the potential of scalable, image-based analytics for climate-smart agriculture and verifiable carbon mitigation. 2025-12-31 2026-01-06T22:10:12Z 2026-01-06T22:10:12Z Brochure https://hdl.handle.net/10568/179446 en Open Access application/pdf International Crops Research Institute for the Semi-Arid Tropics Sowjanya, Palle Sai; Patil, Mukund; Rupavatharam, Srikanth; Gogumalla, Pranuthi; Choudhari, Pushpajeet L.; & Dihudi, Munmun. 2025. AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification. Patancheru, India: ICRISAT.
spellingShingle crop residues
carbon sequestration
carbon mitigation
crop residue
digital solutions
Sowjanya, Palle Sai
Patil, Mukund
Rupavatharam, Srikanth
Gogumalla, Pranuthi
Choudhari, Pushpajeet L.
Dihudi, Munmun
AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title_full AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title_fullStr AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title_full_unstemmed AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title_short AI4Carbon: Smart Image-Analytics Platform for Monitoring Residue Retention Levels in Rice Production Systems – Automated Visual Quantification
title_sort ai4carbon smart image analytics platform for monitoring residue retention levels in rice production systems automated visual quantification
topic crop residues
carbon sequestration
carbon mitigation
crop residue
digital solutions
url https://hdl.handle.net/10568/179446
work_keys_str_mv AT sowjanyapallesai ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification
AT patilmukund ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification
AT rupavatharamsrikanth ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification
AT gogumallapranuthi ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification
AT choudharipushpajeetl ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification
AT dihudimunmun ai4carbonsmartimageanalyticsplatformformonitoringresidueretentionlevelsinriceproductionsystemsautomatedvisualquantification